Schémas/Figures tikz/svg pour la physique
L'idée est ici de proposer une base de schémas conçus en .svg (avec Inkscape) ou codés en tikz (extension latex). Les schémas peuvent être utilisés tels quels ou bien servir de base pour d'autres schémas.
Ces documents sont mis à disposition selon les termes de la Licence Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Cela peut-être aussi l'occasion pour ceux qui le souhaiteraient de se mettre à tikz, en apprenant par l'exemple.
Dans cette optique, on peut recommander la lecture du document "tikz pour l'impatient" ou de "Figures mathématiques avec tikz" ou encore les fiches de Bébert sur tikz.
Quelle est la différence entre le travail avec Inkscape et le travail en tikz ?
Inkscape est un logiciel de dessin vectoriel qui se manipule de la même façon que Paint par exemple : vous choisissez votre outil, vous dessinez, c'est plutôt simple.
L'inconvénient est qu'il est difficile de définir un formatage précis pour tous vos schémas.
En tikz, votre figure sera codée est vous obtiendrez toujours le même résultat en tapant la même ligne de code. C'est plus complexe, mais l'aspect uniformisé de tous vos schémas est intéressant : la police utilisée sera la même partout (et la même que votre document latex), l'écriture d'un vecteur donnera toujours le même rendu, ...
De mon point de vue, comparer Inskape et tikz revient à comparer Word et Latex :
- D'un côté, l'utilisation est facile mais il est difficile d'uniformiser ses productions ;
- De l'autre, le code peut être repoussant, mais le rendu des documents est quasi parfait.
La conversion tikz-svg et inversement est-elle possible ?
Un schéma codé avec tikz peut facilement être exporté : avec les lignes de code suivantes
%prévisualisation dessin par dessin
\usepackage[active,tightpage]{preview}
\PreviewEnvironment{tikzpicture}
\setlength\PreviewBorder{5pt}
%fin
dans votre source .tex, la compilation avec pdflatex vous produit un .pdf ou chaque page est composée d'un schéma.
Il suffit d'ouvrir le pdf avec inkscape à la bonne page pour retrouver le schéma en .svg que vous pourrez modifier ou exporter en divers formats.
Pour une conversion directe en svg, je vous conseille le site misc2svg qui vous permettra de transformer une page de votre pdf
directement en svg à télécharger.
La conversion svg en code tikz est possible via un module (inkscape2tikz) du logiciel inkscape, mais le code
fourni sera nettement moins lisible (et l'intérêt n'est que limité. Ce peut être intéressant lorsque vous voulez que tous vos schémas soient contenus dans le même fichier .tex. Mais la modification du schéma sera problématique.)
Ajout du 14 janvier 2021
Je viens de tomber sur un lien intéressant et on vient de me faire part d'un autre projet qui ne l'est pas moins :
- Le premier permet d'éditer de façon visuel des courbes de Bézier puis d'obtenir le code tikz correspondant :
Editeur de courbes de Bézier
Pour ma part, j'ai toujours eu du mal à les tracer en tikz car il n'est pas facile de prédire le résultat. - Le deuxième m'a été partagé, il s'agit cette fois-ci d'un éditeur de schémas électriques qui permet également d'obtenir après réalisation le code tikz complet : Editeur de schémas électriques
Merci pour ces créations qui facilitent l'utilisation de tikz qui peut parfois être complexe.
Pour rechercher un mot dans la page, utilisez la fonction de votre navigateur
(Ctrl + F)
Voici des petits liens pour vous repérer dans la page :
IMPORTANT : Pour enregistrer une image, faites un clic droit et choisissez "Enregistrez l'image sous".
Schémas tikz
Voici le code qui, placé en préambule, permet de tracer ces figures avec tikz :
\usepackage{pgfplots}
\usepackage{tikz}
\usepackage[european resistor, european voltage, european current]{circuitikz}
\usetikzlibrary{arrows,shapes,positioning}
\usetikzlibrary{decorations.markings,decorations.pathmorphing,
decorations.pathreplacing}
\usetikzlibrary{calc,patterns,shapes.geometric}
%FIN PREAMBULE
Pour faciliter le tracé d'une figure, on peut s'aider d'un quadrillage, obtenu avec le code suivant :
\draw [help lines] (-4,-4) grid[step=0.5] (4,4) ;
Voir un quadrillage complet :
\draw [thin, gray!50] (-12,-4) grid[step=0.5] (4,4);
\draw [gray] (-12,-4) grid[step=1] (4,4);
\draw [ultra thin,gray!50] (-12,-4) grid[step=0.1] (4,4);
Outils mathématiques-divers : repères, courbes, ...
Repère
\begin{tikzpicture}[scale=1]
\draw (0,0) --++ (1,1) --++ (3,0) --++ (-1,-1) --++ (-3,0);
\draw [thick] [->] (2,0.5) --++(0,2) node [right] {z};
%thick : gras ; very thick : très gras ; ultra thick : hyper gras
\draw (2,0.5) node [left] {O};
\draw [thick] [->] (2,0.5) --++(-1,-1) node [left] {x};
\draw [thick] [->] (2,0.5) --++(2,0) node [below] {y};
\end{tikzpicture}
Lignes de champ et équipotentielles
\begin{tikzpicture}[scale=0.8]
\draw[->] (-2,0) -- (2,0);
\draw[->] (0,-2) -- (0,2);
\draw node [red] at (-2,1.25) {\scriptsize{Lignes de champ}};
\draw node [blue] at (2,-1.25) {\scriptsize{Equipotentielles}};
\draw[color=red,domain=-3.14:3.14,samples=200,smooth] plot (canvas polar cs:angle=\x r,radius={3*sin(\x r)*3*sin(\x r)*5});
%r = angle en radian
%domain permet de définir le domaine dans lequel la fonction sera tracée
%samples=200 permet d'augmenter le nombre de points pour le tracé
%smooth améliore également la qualité de la trace
\draw[color=red,domain=-3.14:3.14,samples=200,smooth] plot (canvas polar cs:angle=\x r,radius={2*sin(\x r)*2*sin(\x r)*5});
\draw[color=blue,domain=-pi:pi,samples=200,smooth] plot (canvas polar cs:angle=\x r,radius={3*sqrt(abs(cos(\x r)))*15});
\draw[color=blue,domain=-pi:pi,samples=200,smooth] plot (canvas polar cs:angle=\x r,radius={2*sqrt(abs(cos(\x r)))*15});
\end{tikzpicture}
Fonction arctangente
\begin{tikzpicture}[scale=0.8]
\draw[very thin,color=gray] (-pi,pi) grid (-pi,pi);
\draw[->] (-pi,0) -- (pi,0) node[right] {$x$};
\draw[->] (0,-2) -- (0,2);
\draw[color=red,domain=-pi:pi,samples=150] plot ({\x},{rad(atan(\x))} )node[right,red] {$\arctan(x)$};
\draw[color=blue,domain=-pi:pi] plot ({\x},{rad(-atan(\x))} )node[right,blue] {$-\arctan(x)$};
%Le rad() est une autre façon de dire que l'argument est en radian
\end{tikzpicture}
Sinusoïdes 1
\begin{tikzpicture}[scale=1]
%papier milli
\draw [very thin, gray!20] (0,-3) grid[step=0.1] (2.5*pi,3);
\draw [very thin, black!20] (0,-3) grid[step=0.5] (2.5*pi,3);
\draw [very thin, black!40] (0,-3) grid[step=1] (2.5*pi,3);
%fin
%axes
\draw[->,>=stealth] (0,0) -- (2.6*pi,0) node[below right] {$t (ms)$};
%stealth définit un style de flèche, "furtif"
\draw[->,>=stealth] (0,-3) -- (0,3);
\draw (1,0.1) -- (1,-0.1) node [below right] {{\scriptsize $0.2$}}; %échelle abscisse
\draw (0.1,1) -- (-0.1,1) node [left] {{\scriptsize $2V$}}; %échelle ordonnée
%fin
%legende
\draw (-2,3) -- (-0.4,3) -- (-0.4,1.9) -- (-2,1.9) -- (-2,3); %cadre
\draw [red] (-1.8,2.7)--(-1.2,2.7) node [right] [red] {$V_E$};
\draw [blue] (-1.8,2.2)--(-1.2,2.2) node [right] [blue] {$V_S$};
%fin
\draw[color=red,thick,domain=0:2.5*pi, samples=150] plot ({\x},{2.5*sin(1.8*\x r + pi/2 r)});
\draw[color=blue,thick,domain=0:2.5*pi, samples=150] plot ({\x},{1.8*sin(1.8*\x r + 1.8*pi r)});
\end{tikzpicture}
Sinusoïdes 2
\begin{tikzpicture}[scale=0.75]
%papier milli
%\draw [very thin, gray!20] (0,-3) grid[step=0.1] (2.5*pi,3);
%\draw [very thin, black!20] (0,-3) grid[step=0.5] (2.5*pi,3);
%\draw [very thin, black!40] (0,-3) grid[step=1] (2.5*pi,3);
%fin
%axes
\draw[->,>=stealth] (0,0) -- (2.6*pi,0) node[below right] {$t$};
\draw[->,>=stealth] (0,-3) -- (0,3);
%\draw (1,0.1) -- (1,-0.1) node [below right] {{\scriptsize $0.2$}}; %échelle abscisse
%\draw (0.1,1) -- (-0.1,1) node [left] {{\scriptsize $2V$}}; %échelle ordonnée
%fin
%legende
\draw (2,3) rectangle (5.8,4.5); %cadre
\draw [red] (2.2,4.0)--(3.2,4.0) node [right] [red] {Amplitude};
\draw [blue, dotted, thick] (2.2,3.4)--(3.2,3.4) node [right] [blue] {Vitesse};
%dotted : style de tracé pointillé avec des points, dashed : pointillés avec des tirets
%fin
\draw[color=red,thick,domain=0:2.5*pi, smooth, samples=150] plot ({\x},{2.5*sin(1.8*\x r + pi/2 r)});
\draw[color=blue,dotted,very thick,domain=0:2.5*pi,smooth, samples=150] plot ({\x},{1.8*sin(1.8*\x r)});
\draw [dashed] (0.88,0) -- (0.88,1.75);
\draw [dashed] (4.38,0) -- (4.38,1.75);
\end{tikzpicture}
Régime pseudo-périodique
\begin{tikzpicture}[scale=0.7]
%papier milli
%\draw [very thin, gray!10] (0,-3) grid[step=0.1] (2.5*pi,3);
%\draw [very thin, black!10] (0,-3) grid[step=0.5] (2.5*pi,3);
%\draw [very thin, black!20] (0,-3) grid[step=1] (2.5*pi,3);
%fin
%axes
\draw[->,>=stealth] (0,0) -- (2.6*pi,0) node[below right] {$t$};
\draw[->,>=stealth] (0,-3) -- (0,3) node [above left] {$x$};
%\draw (1,0.1) -- (1,-0.1) node [below right] {{\scriptsize $0.2$}}; %échelle abscisse
%\draw (0.1,1) -- (-0.1,1) node [left] {{\scriptsize $2V$}}; %échelle ordonnée
%fin
%legende
%\draw (-2,3) -- (-0.4,3) -- (-0.4,1.9) -- (-2,1.9) -- (-2,3); %cadre
%\draw [red] (-1.8,2.7)--(-1.2,2.7) node [right] [red] {$V_E$};
%\draw [blue] (-1.8,2.2)--(-1.2,2.2) node [right] [blue] {$V_S$};
%fin
%Courbe principale
\draw[color=blue,thick,domain=0:2.5*pi, samples=150,smooth] plot ({\x},{2.5*exp(-\x/4)*sin(1.8*\x r + pi/2 r)});
%enveloppe
\draw[color=gray,thin,dotted,domain=0:2.5*pi, samples=150,smooth] plot ({\x},{2.5*exp(-\x/4)});
\draw[color=gray,thin,dotted,domain=0:2.5*pi, samples=150,smooth] plot ({\x},{-2.5*exp(-\x/4)});
%double flèche
\draw[gray!80,line width=1pt,<->,>=triangle 45] (2.6,2) --++ (3.5,0) node [midway, above] {\colorbox{white}{\textcolor{gray}{\scriptsize{$T$}}}} ;
%Fin
%pointillés
\draw [very thin,gray!80, dashed] (2.6,0) --++ (0,2.5);
\draw [very thin,gray!80, dashed] (6.1,0) --++ (0,2.5);
\draw [very thin,gray!80, dashed] (-0.1,2.5) --++ (0.2,0) node [left=0.15cm, black] {\scriptsize{A}};
\draw [very thin,gray!80, dashed] (0,-2.5) --++ (-0.1,0) node [left=0.07cm, black] {\scriptsize{-A}};
\end{tikzpicture}
Energie potentielle effective
\tikzset{
xmin/.store in=\xmin, xmin/.default=-3, xmin=-3,
xmax/.store in=\xmax, xmax/.default=3, xmax=3,
ymin/.store in=\ymin, ymin/.default=-3, ymin=-3,
ymax/.store in=\ymax, ymax/.default=3, ymax=3,
}
% Commande qui trace la grille entre (xmin,ymin) et (xmax,ymax)
\newcommand {\grille}
{\draw[help lines] (\xmin,\ymin) grid (\xmax,\ymax);}
% Commande \axes
\newcommand {\axes} {
\draw[->] (\xmin,0) -- (\xmax,0);
\draw[->] (0,\ymin) -- (0,\ymax);
}
% Commande qui limite l'affichage à (xmin,ymin) et (xmax,ymax)
\newcommand {\fenetre}
{\clip (\xmin,\ymin) rectangle (\xmax,\ymax);}
\begin{tikzpicture}[xmin=0,xmax=8,ymin=0,ymax=5]
\axes
%\draw [very thin, gray] (0,0) grid[step=0.2] (4.4,4.2);
\draw [domain=1:8, smooth] plot (\x,{3/\x + 3/(2*\x^2)});
\draw (0,5) node [left] {$E_{Peff}(r)$};
\draw (8,0) node [below] {r};
\draw (0,0) node [below left] {O};
\draw (0,2.5) node [left] {$E_M$};
\draw [domain=0:8] plot (\x,{2.5});
\draw [dashed] (1.6,0) -- (1.6,2.5) ;
\draw (1.6,0) node [below] {$r_{min}$};
\fill[color=gray!70, opacity=0.5] (0,-0.1) rectangle (1.6,0.1);
\end{tikzpicture}
Ecran d'oscilloscope
%ecran oscilloscope
\begin{tikzpicture}[scale=0.4]
\draw[black,thick,rounded corners=10pt] (0,0) rectangle (10,8);
\begin{scope} % permet d'appliquer des propriétés à une partie de code seulement
\clip (0.05,0.05) rectangle (9.95,7.95);%créer une découpe de la fenêtre comme indiqué
\foreach \x in {1,2,...,9}%Démarrage d'une boucle : "pour tout x appartenant à ..."
{
%la boucle est délimitée par une paire d'accolade
\draw[gray!20, very thin] (\x,0.05) -- (\x,7.95);%thin = fin, il existe aussi very thin et ultra thin
}
\foreach \y in {1,2,...,7}
{
\draw[gray!20, very thin] (0.05,\y) -- (9.95,\y);
}
\foreach \x in {0.2,0.4,...,9.8}
{
\draw[gray!20, very thin] (\x,4.1) -- (\x,3.9);
}
\foreach \y in {0.2,0.4,...,7.8}
{
\draw [gray!20, very thin] (5.1,\y) -- (4.9,\y);
}
%FIN ecran oscilloscope
\draw[yshift=4cm,color=green,thick,domain=0:10, smooth, samples=150] plot ({\x},{2.5*sin(0.348*\x r)});
\draw[yshift=4cm,color=green,dashed,thick,domain=0:10,smooth, samples=150] plot ({\x},{1.8*sin(0.348*\x r- pi/2 r)});
\draw[gray!80,line width=1pt,<->,>=triangle 45] (0.1,4) -- (8.9,4) node [midway, below] {\colorbox{white}{\textcolor{gray}{\scriptsize{9 divisions}}}} ;
\end{scope}
\end{tikzpicture}
Courbes de Lissajous
%ecran oscilloscope
\begin{tikzpicture}[scale=0.4]
\draw[black,thick,rounded corners=10pt] (0,0) rectangle (10,8);
\begin{scope}
\clip (0.05,0.05) rectangle (9.95,7.95);
\foreach \x in {1,2,...,9}
{
\draw[gray!20, very thin] (\x,0.05) -- (\x,7.95);
}
\foreach \y in {1,2,...,7}
{
\draw[gray!20, very thin] (0.05,\y) -- (9.95,\y);
}
\foreach \x in {0.2,0.4,...,9.8}
{
\draw[gray!20, very thin] (\x,4.1) -- (\x,3.9);
}
\foreach \y in {0.2,0.4,...,7.8}
{
\draw [gray!20, very thin] (5.1,\y) -- (4.9,\y);
}
%FIN ecran oscilloscope
\draw[xshift=5cm,yshift=4cm,color=green,thick,domain=0:2*pi, smooth, samples=150] plot ({3*sin(2*\x r},{3*sin(3*\x r)});
\draw [red,very thin, dashed] (2,1) rectangle (8,7);
\filldraw [blue] (2.5,1) circle (0.15);
\filldraw [blue] (5,1) circle (0.15);
\filldraw [blue] (7.5,1) circle (0.15);
\filldraw [blue] (2,2) circle (0.15);
\filldraw [blue] (2,6) circle (0.15);
\end{scope}
\end{tikzpicture}
Tourniquet
\begin{tikzpicture}
\def \n {7}
%Définition d'un paramètre utilisé dans le code qui peut être utilisé x fois
\def \radius {4cm}
\def \margin {8} % margin in angles, depends on the radius
\foreach \s in {1,...,\n}
{
\node[draw, circle, fill=blue!20] at ({360/\n * (\s - 1)}:\radius) {TP$\s$};
%blue!20 = couleur bleu à 20%
\draw[->, >=latex] ({360/\n * (\s - 1)+\margin}:\radius)
arc ({360/\n * (\s - 1)+\margin}:{360/\n * (\s)-\margin}:\radius);
}
\node at (4.5,0) [right, text width=4.5cm] {\small{Oscilloscope et GBF}};
\node at ({360/7 * (2 - 1)}:\radius) [right=0.5cm, text width=4.5cm] {\small{Dipôles passifs}};
\node at ({360/7 * (3 - 1)}:\radius) [right=0.75cm, above=0.5cm, text width=4.5cm] {\small{Moments de forces}};
\node at ({360/7 * (4 - 1)}:\radius) [left=0.4cm,text width=2.6cm] {\small{Lentilles minces}};
\node at ({360/7 * (5 - 1)}:\radius) [left=0.4cm, text width=2.6cm] {\small{Force centrifuge}};
\node at ({360/7 * (6 - 1)}:\radius) [below=0.5cm, text width=2cm] {\small{Calorimétrie}};
\node at ({360/7 * (7 - 1)}:\radius) [right=0.6cm,text width=4.5cm] {\small{Pendules simple et élastique}};
\draw[thick,-latex] (15:2) arc(10:270:2);
\node[text width=3.5cm,text justified] at (0,0.25) {\begin{center}\textbf{Sens de rotation des groupes}\end{center}};
\end{tikzpicture}
Electromagnétisme
Champ électrique créé par des charges
\begin{tikzpicture}[scale=1.2] %scale permet de régler la taille de la figure
\draw [very thin, gray] (0,0) grid[step=0.2] (4.4,4.2);%Tracé du quadrillage
%points
\draw (0.6,3.2) node {$\bullet$} node [above left] {\colorbox{white}{$+q$}} ;
\draw (3.4,3.2) node {$\bullet$} node [above left] {\colorbox{white}{$+q$}} ;
\draw (1.6,1.8) node {$\bullet$} node [above=0.25cm] at (1.7,1.8) {\colorbox{white}{$M$}} ;
%FIN points
%pointillés
\draw [dashed] (0.6,3.2) -- (1.6,1.8) ;
\draw [dashed] (3.4,3.2) -- (1.6,1.8) ;
\draw [dashed, blue] (1.6,1.8) --++ (-0.6,-0.4) --++ (0.4,-0.6);
\draw [dashed, blue] (1.6,1.8) --++ (0.6,-0.8) --++ (-0.6,-0.4);
%FIN pointillés
%Vecteurs
\draw [thick, blue] [->] (1.6,1.8) --++ (0.6,-0.8) node [blue] [above right] {\colorbox{white}{\textcolor{blue}{$d\overrightarrow{E}$}}} ;
\draw [thick, blue] [->] (1.6,1.8) --++ (-0.6,-0.4) node [blue] [above left] {\colorbox{white}{\textcolor{blue} {$d\overrightarrow{E'}$}}} ;
\draw [ultra thick, blue] [->] (1.6,1.8) --++ (-0,-1.2) node [blue] [below left] {\colorbox{white}{\textcolor{blue}{$\overrightarrow{E}$}}} ;
%FIN Vecteurs
\end{tikzpicture}
Lignes de champ 1
\tikzstyle arrowstyle=[scale=1] %taille des flèches
\tikzstyle directed=[postaction={decorate,decoration={markings,
mark=at position .65 with {\arrow[arrowstyle]{stealth}}}}]%définition d'un trait avec une flèche en son milieu
\begin{tikzpicture}
\foreach \t in {30,60, ...,360} %boucle
\draw[red,thick, directed] (0pt,0pt) -- (\t:3cm);%trait tracé en coordonnées polaires
\fill circle (1mm) node [below right] {\colorbox{white}{+q}};%point central
\end{tikzpicture}
Lignes de champ 2
\begin{tikzpicture}
\useasboundingbox (-5,-4) rectangle (5,4); % découpe de la figure selon les dimensions
\path (-3,0) coordinate (A); %attribution d'un nom à un point
\path (3,0) coordinate (B);
\path (-2,1) coordinate (C);
\path (2,1) coordinate (D);
\begin{scope} %application de style qu'à une partie de code
\tikzstyle arrowstyle=[scale=1.5];%taille de flèche
\tikzstyle directed=[postaction={decorate,decoration={markings,
mark=at position .52 with {\arrow[arrowstyle]{stealth}}}}] ;
\draw[red,thick, directed] (A) .. controls (C) and (D) .. (B);%tracé de courbe de Bézier
\draw[red,thick, directed] (A) .. controls +(1,2) and +(-1,2) .. (B);
\draw[red,thick, directed] (A) .. controls +(1,3) and +(-1,3) .. (B);
\draw[red,thick, directed] (A) .. controls +(1,4) and +(-1,4) .. (B);
\draw[red,thick, directed] (A) .. controls (-2,-1) and (2,-1) .. (B);
\draw[red,thick, directed, yscale=-1] (A) .. controls +(1,2) and +(-1,2) .. (B);%yscale permet de retourner verticalement la figure
\draw[red,thick, directed][yscale=-1] (A) .. controls +(1,3) and +(-1,3) .. (B);
\draw[red,thick, directed][yscale=-1] (A) .. controls +(1,4) and +(-1,4) .. (B);
\end{scope}
\begin{scope}
\tikzstyle arrowstyle=[scale=1.5];
\draw[red,thick, postaction={decorate,decoration={markings,
mark=at position .2 with {\arrow[arrowstyle]{stealth}}}},postaction={decorate,decoration={markings,
mark=at position .82 with {\arrow[arrowstyle]{stealth}}}} ]
(A) .. controls +(1,8) and +(-1,8) .. (B);
\draw[red,thick, postaction={decorate,decoration={markings,
mark=at position .15 with {\arrow[arrowstyle]{stealth}}}},postaction={decorate,decoration={markings,
mark=at position .87 with {\arrow[arrowstyle]{stealth}}}} ]
(A) .. controls +(-3,10) and +(3,10) .. (B);
\draw[red,thick, postaction={decorate,decoration={markings,
mark=at position .12 with {\arrow[arrowstyle]{stealth}}}},postaction={decorate,decoration={markings,
mark=at position .89 with {\arrow[arrowstyle]{stealth}}}} ] (A) .. controls +(-8,10) and +(8,10) .. (B);
\draw[red,thick, postaction={decorate,decoration={markings,
mark=at position .08 with {\arrow[arrowstyle]{stealth}}}},postaction={decorate,decoration={markings,
mark=at position .94 with {\arrow[arrowstyle]{stealth}}}} ] (A) .. controls +(-15,10) and +(15,10) .. (B);
\draw[red,thick, postaction={decorate,decoration={markings,
mark=at position .25 with {\arrow[arrowstyle]{stealth}}}}] (A) -- (-10,0);
\draw[red,thick, postaction={decorate,decoration={markings,
mark=at position .25 with {\arrowreversed[arrowstyle]{stealth}}}}] (B) -- (10,0);
\draw[red,thick, postaction={decorate,decoration={markings,
mark=at position .2 with {\arrow[arrowstyle]{stealth}}}},postaction={decorate,decoration={markings,
mark=at position .82 with {\arrow[arrowstyle]{stealth}}}} ][yscale=-1] (A) .. controls +(1,8) and +(-1,8) .. (B);
\draw[red,thick, postaction={decorate,decoration={markings,
mark=at position .15 with {\arrow[arrowstyle]{stealth}}}},postaction={decorate,decoration={markings,
mark=at position .87 with {\arrow[arrowstyle]{stealth}}}} ][yscale=-1] (A) .. controls +(-3,10) and +(3,10) .. (B);
\draw[red,thick,postaction={decorate,decoration={markings,
mark=at position .12 with {\arrow[arrowstyle]{stealth}}}},postaction={decorate,decoration={markings,
mark=at position .89 with {\arrow[arrowstyle]{stealth}}}} ][yscale=-1] (A) .. controls +(-8,10) and +(8,10) .. (B);
\draw[red,thick, postaction={decorate,decoration={markings,
mark=at position .08 with {\arrow[arrowstyle]{stealth}}}},postaction={decorate,decoration={markings,
mark=at position .94 with {\arrow[arrowstyle]{stealth}}}} ][yscale=-1] (A) .. controls +(-15,10) and +(15,10) .. (B);
\end{scope}
\fill (A) circle (1mm) node [below left] {\colorbox{white}{+q}};%Charge
\fill (B) circle (1mm) node [below right] {\colorbox{white}{-q}};
\end{tikzpicture}
Dipôle électrostatique
\begin{tikzpicture}
\draw[->] (0,0) -- (3,0);
\draw (1,0) node {$\bullet$} node[below]{{\scriptsize (-q)}};
\draw (2,0) node {$\bullet$} node[below]{{\scriptsize (+q)}};
\draw (1,0) node {$\bullet$} node[above]{{\scriptsize N}};
\draw (2,0) node {$\bullet$} node[above]{{\scriptsize P}};
\draw (3,0) node[above]{$\overrightarrow{p}$};
\end{tikzpicture}
Plans de symétrie et champ électrique
\begin{tikzpicture}[scale=1]
\draw (0,0) --++ (1,1) --++ (3,0) --++ (-1,-1) --++ (-3,0);
\draw [thick] [->] (2,0.5) --++(0,3) node [right] {z};
\draw (2,0.5) node [left] {O};
\draw (2,1.8) node {$\bullet$} node [left] {M};
\draw [thick] [->] (2,0.5) --++(-1,-1) node [left] {x};
\draw [thick] [->] (2,0.5) --++(2,0) node [below] {y};
\coordinate (A) at (1.2,1.2);
\coordinate (D) at (1.2,-1.6);
\coordinate (M) at (2,1.8);
\coordinate (B) at (2.8,2.4);
\coordinate (C) at (2.8,-0.4);
\draw[dashed] (A)--(M);
\draw[dashed] (A)--(D);
\draw[dashed] (M)--(B);
\draw[dashed] (D)--(C);
\draw[dashed] (C)--(B);
\coordinate (A1) at (1.0,1.8);
\coordinate (D1) at (1.0,-1.0);
\coordinate (B1) at (3,1.8);
\coordinate (C1) at (3,-1.0);
\draw[dashed] (A1)--(B1);
\draw[dashed] (B1)--(C1);
\draw[dashed] (C1)--(D1);
\draw[dashed] (D1)--(A1);
\draw [ultra thick, blue] [->] (2,1.8) --++(0,1) node [left, blue] {$\overrightarrow{E}$};
\end{tikzpicture}
Champ électrique symétrique
\begin{tikzpicture}[scale=1]
\draw (0,0) --++ (1,1) --++ (3,0) --++ (-1,-1) --++ (-3,0);
\draw (2.1,1.4) node {$\bullet$} node [left] {M};
\draw (2.1,-0.8) node {$\bullet$} node [left] {M'};
\draw [ultra thick, blue] [->] (2.1,1.4) --++(0,1) node [left, blue] {$\overrightarrow{E}$};
\draw [ultra thick, blue] [->] (2.1,-0.8) --++(0,-1) node [left, blue] {$\overrightarrow{E'}$};
\end{tikzpicture}
Spire
\begin{tikzpicture}
\tikzstyle arrowstyle=[scale=2] %Taille de la flèche
\draw[thick, black, postaction={decorate,decoration={markings,mark=at position .42 with {\arrow[arrowstyle]{stealth}}}}] (-1,0) ellipse (0.8cm and 2cm);
\draw (-2,1) node [left] {$I$};
\draw [thick,->,>=stealth] (-4,0) node [below] {$z'$} -- (3,0) node [below] {$z$};
\draw (2,0) node {$\bullet$} node [below] {$M$};
\draw (-1,0) node {$\bullet$} node [below left] {$O$};
\end{tikzpicture}
Sonde de teslamètre
\begin{tikzpicture}[scale=1]
\filldraw [gray!30] (0,0) rectangle (3,1);
\draw [very thick, gray!70] (0,0) -- (0,1) -- (3,1);
\draw [very thick, gray!70] (0,0) -- (3,0);
\filldraw [gray!30] (0,1) --++ (0.5,0.5) --++ (3,0) --++ (-0.5,-0.5);
\draw [very thick, gray!70] (0,1) --++ (0.5,0.5) --++ (3,0);
\draw [thick, -latex] (0.2,0.8) -- (0.2,0.1) node [right=0.1cm, thick] at (0.2,0.2) {{\footnotesize $B_Z$}};
\draw [thick, -latex] (0.2,0.8) -- (0.9,0.8) node [right, thick] {{\footnotesize $B_X$}};
\end{tikzpicture}
Teslamètre
\begin{tikzpicture}[scale=0.3]
\draw [thick] (0,0) -- (6,0) -- (6,6) -- (0,6) -- cycle;
\draw [thick] (1,4) -- (5,4) -- (5,5) -- (1,5) -- cycle;
\draw (2,2) circle (0.25cm) node [below=0.1cm, thick] {{\footnotesize $B_X$}};
\draw (4,2) circle (0.25cm) node [below=0.1cm, thick] {{\footnotesize $B_Z$}};
\end{tikzpicture}
Tension de Hall dans une sonde
\begin{tikzpicture}
\draw [thick, black] (1.5,0) rectangle (4.5,2);
\draw [thick, black] (0.5,1) node {$\bullet$} node [below] {A} -- (5.5,1) node {$\bullet$} node [below] {B};
\draw [red] (4.25,0.25) circle (0.15cm) node [left=0.25cm, thick, red] {\footnotesize $\mathbf{\overrightarrow{B}}$};
\filldraw [red] (4.25,0.25) circle (0.05cm);
\draw [thick, -latex, green] (5,0) -- (5,2) node [right=0.1cm, thick, green] at (5,1.75) {{\footnotesize $\mathbf{U_H}$}};
\end{tikzpicture}
Equipotentielles entre deux plaques chargées
\begin{tikzpicture}[scale=1]
\fill [gray] (0,0) rectangle (0.2,3) node [left=0.2] {10V} (3,0) rectangle (3.2,3) node [right] {0V};
\draw (0.5,4) node [right] {$V_1$} -- (0.75,3) .. controls (1,2) .. (1,0) .. controls (1,-0.5) .. (0,-1);
\draw (1.5,3) node [right=0.2] {$V_2$} .. controls (2.25,2.75) .. (2.5,2) ..controls (2.55,1.5) .. (2.5,1) .. controls (2.45,0.5) .. (2.5,0) .. controls (2.75,-1) .. (3.5,-1);
\draw [dashed] (-0.5,0) .. controls (0,0.45) .. (1,0.5) .. controls (1.5,0.6) .. (2,0.75) .. controls (2.75,1.1) .. (3.5,1);
\node at (1,0.5) {$\bullet$};
\node [above right] at (1,0.5) {$x_1$};
\node at (2.5,1) {$\bullet$};
\node [above left] at (2.5,1) {$x_2$};
\end{tikzpicture}
Dipôle de charges ponctuelles
\begin{tikzpicture}[scale=1]
\fill [gray] (-1,0) circle (0.15cm) node [above left,black] {-q};
\fill [gray] (1,0) circle (0.15cm) node [below right,black] {+q};
\draw (2,0) circle (1.5cm);
\draw (1.25,1.3)--++(0,0.1) (1.25,1.3)--++(0,-0.1) node [above left] {M};
\draw [thick] (-1,0) -- (1.25,1.3) node [midway,above] {$r_2$};
\draw [thick] (1,0) -- (1.25,1.3) node [midway,right] {$r_1$};
\node at (3,1.5) {$V_i$};
\draw [|<->|] (-1,-0.25) -- (1,-0.25) node [midway,below] {$d$};
\draw [dashed,thin,gray] (-1.15,0)--++(0,-0.75) (-0.85,0)--++(0,-0.75);
\draw [|<->|,gray] (-1.15,-0.75) -- (-0.85,-0.75) node [midway,below] {$2a$};
\draw [dashed,thin,gray] (1.15,0)--++(0,-1.25) (0.85,0)--++(0,-1.25);
\draw [|<->|,gray] (1.15,-1.25) -- (0.85,-1.25) node [midway,below] {$2a$};
\end{tikzpicture}
Boussole et champs magnétiques
\begin{tikzpicture}[scale=1]
\begin{scope}[rotate=-50]
\draw (0,0) circle (1.5cm);
\node at (2.5,2) [text width=2cm] {\begin{center} \scriptsize La bobine est parcourue par un courant $I$\end{center} };
\filldraw [gray,draw=black] (-0.25,0)--(0,1.5)--(0.25,0)--cycle;
\filldraw [white,draw=black] (-0.25,0)--(0,-1.5)--(0.25,0)--cycle;
\end{scope}
\draw [dotted] (0,0) --++(0,1.5);
\draw [ultra thick,->,>=stealth] (1.2,1.0) --++ (0,1.5) node [above] {$\overrightarrow{B}_a$} ;
\draw [ultra thick,->,>=stealth] (1.2,1.0) --++ (1.70,0) node [below] {$\overrightarrow{B}$} ;
\draw [ultra thick,->,>=stealth] (1.2,1.0) --++ ($1.4*(1.2,1)-1.4*(0,0)$) node [above] {$\overrightarrow{B}_T$} ;
\draw (0,0.8) to [bend left] (0.45,0.55);
\node at (0.4,0.9) [] {$\alpha$};
\begin{scope}[shift=({1.2,0.8})]
\draw (0,0.8) to [bend left] (0.45,0.55);
\node at (0.4,0.9) [] {$\alpha$};
\end{scope}
\end{tikzpicture}
Bobine fine seule
\begin{tikzpicture}[scale=1]
%\helpgrid{4}{2}
\filldraw [fill=gray!25,draw=black] (-0.6,0) ellipse (0.25cm and 2cm);
\filldraw [gray!25] (-0.6,-2) to [bend left=8] (-0.6,2) -- (0,2) to [bend right=8] (0,-2) -- cycle;
\filldraw [fill=gray!50,draw=black] (0,0) ellipse (0.25cm and 2cm);
\draw (-0.6,2) --++ (0.6,0);
\draw (-0.6,-2) --++ (0.6,0);
\draw [ |<->|] (-0.6,-2.2) -- (0,-2.2) node [midway, below] {$L$};
\draw [ |<->|] (-1.1,2) -- (-1.1,-2) node [midway,above left] {$2R$};
\draw [->,-latex,dashed] (-2,0)--++(4.5,0) node [above right] {$x$};
\draw [->,-latex,dashed] (-0.3,-0.5)--++(0,3.5) node [left] {$y$};
\node at (1.6,0) [] {};
\node at (1.6,0) [below right] {\footnotesize M};
\draw (1.6,0)--++(0,0.1) (1.6,0)--++(0,-0.1);
\draw (1.6,0) -- (-0.3,2) (1.6,0) -- (-0.3,-2);
\draw (1.2,0) to [bend left=45] (1.2,0.42);
\node at (0.9,0.2) [] {$\theta$};
\node at (-0.3,0) [below left] {\footnotesize O};
\draw (-0.3,0)--++(0,0.1) (-0.3,0)--++(0,-0.1);
\draw [->,=<stealth,gray] (-0.3,-2) to [bend left=8] (-0.5,-1) node [above] {\footnotesize$I$};
\draw [->,=<stealth,gray] (-0.4,-2) to [bend left=8] (-0.6,-1);
\draw [->,=<stealth,gray] (-0.2,-2) to [bend left=8] (-0.4,-1);
\end{tikzpicture}
Bobines de Helmoltz
\begin{tikzpicture}[scale=0.9]
\filldraw [fill=gray!25,draw=black] (-0.6,0) ellipse (0.25cm and 2cm);
\filldraw [gray!25] (-0.6,-2) to [bend left=8] (-0.6,2) -- (0,2) to [bend right=8] (0,-2) -- cycle;
\filldraw [fill=gray!50,draw=black] (0,0) ellipse (0.25cm and 2cm);
\draw (-0.6,2) --++ (0.6,0);
\draw (-0.6,-2) --++ (0.6,0);
\draw [->,=<stealth,gray] (-0.3,-2) to [bend left=8] (-0.5,-1) node [above] {\footnotesize$I$};
\draw [->,=<stealth,gray] (-0.4,-2) to [bend left=8] (-0.6,-1);
\draw [->,=<stealth,gray] (-0.2,-2) to [bend left=8] (-0.4,-1);
\node at (-0.3,0) [below left] {\footnotesize O};
\draw (-0.3,0)--++(0,0.1) (-0.3,0)--++(0,-0.1);
\begin{scope}[shift=({2,0})]
\filldraw [fill=gray!25,draw=black] (-0.6,0) ellipse (0.25cm and 2cm);
\filldraw [gray!25] (-0.6,-2) to [bend left=8] (-0.6,2) -- (0,2) to [bend right=8] (0,-2) -- cycle;
\filldraw [fill=gray!50,draw=black] (0,0) ellipse (0.25cm and 2cm);
\draw (-0.6,2) --++ (0.6,0);
\draw (-0.6,-2) --++ (0.6,0);
\draw [->,=<stealth,gray] (-0.3,-2) to [bend left=8] (-0.5,-1) node [above] {\footnotesize$I$};
\draw [->,=<stealth,gray] (-0.4,-2) to [bend left=8] (-0.6,-1);
\draw [->,=<stealth,gray] (-0.2,-2) to [bend left=8] (-0.4,-1);
\node at (-0.3,0) [below left] {\footnotesize O};
\draw (-0.3,0)--++(0,0.1) (-0.3,0)--++(0,-0.1);
\end{scope}
\draw [ |<->|] (-0.4,2.2) -- (1.6,2.2) node [midway, above] {$R$};
\draw [ |<->|] (2.6,0) -- (2.6,2) node [midway, right] {$R$};
\draw [->,-latex,dashed] (-1.5,0)--++(5,0) node [above right] {$x$};
\end{tikzpicture}
Solénoïde
\tikzstyle simple=[postaction={decorate,decoration={markings,mark=at position .5 with {\arrow[scale=2,draw=black,> = stealth]{>}}}}]
\tikzstyle simplerev=[postaction={decorate,decoration={markings,mark=at position .5 with {\arrow[scale=2,draw=black,> = stealth]{<}}}}]
\begin{tikzpicture}[scale=1]
\filldraw [fill=gray!25,draw=black] (-2.6,0) ellipse (0.25cm and 1cm);
\filldraw [gray!25] (-2.6,-1) to [bend left=8] (-2.6,1) -- (2.6,1) to [bend right=8] (2.6,-1) -- cycle;
\foreach \x in {-2.5,-2.4,...,2.6}
{
\filldraw [fill=gray!25,draw=black] (\x,1) arc (90:270:0.25cm and 1cm); %arc elliptique
}
\filldraw [fill=gray!50,draw=black] (2.6,0) ellipse (0.25cm and 1cm);
\draw (-2.6,1) -- (2.6,1);
\draw (-2.6,-1) -- (2.6,-1);
\draw [ |<->|] (-2.6,1.2) -- (2.6,1.2) node [midway, above] {$L$};
\draw [->,-latex,dashed] (-3.5,0)--++(7,0) node [above right] {$x$};
\node at (-0,0) [below left,fill=gray!25] {\footnotesize O};
\draw (-0,0)--++(0,0.1) (-0,0)--++(0,-0.1);
\draw [simple] (-2.6,-1) to [bend right=45] ++(-1,-1) ;
\node at (-3,-1.5) {I};
\draw [simplerev] (2.6,-1) to [bend right=45] ++(1,-1) ;
\node at (3.2,-1.5) {I};
\end{tikzpicture}
Electrocinétique
On utilise ici uniquement le package circuitikz pour représenter les circuits.
Circuit électrique à trois branches
\begin{circuitikz}
\draw (0,0) to[V, v=$E_1$, i=$i_1$] (0,2) to[R, l=$R_1$] (0,4) -- (2,4)
to [R, i=$i_2$, l=$R_2$] (2,0.5) -- (2,0) -- (4,0)
to[V, v=$E_3$, i=$i_3$] (4,2) to[R, l=$R_3$] (4,4) -- (2,4)
(0,0) -- (2,0) ;
\end{circuitikz}
Circuit électrique à trois branches avec noeuds
\begin{circuitikz}[scale=0.8]
\draw (0,0) -- (0,0.5) to[R, i=$i_{11}$,l=$R_1$] (0,4) -- (2,4)
to [R, i>^=$i_2$, l=$R_2$] (2,0.5) -- (2,0) -- (4,0)
%le i>^ permet d'installer une flèche d'intensité après le composant, noté i2 sur le dessus
to[V, v=$E_3$] (4,1.5) to[R, i=$i_{13}$ , l_=$R_3$] (4,4) -- (2,4)
(0,0) -- (2,0) ;
\draw (0,4) node {$\bullet$} node [above left] {A};
\draw (2,4) node {$\bullet$} node [above] {B};
\draw (4,4) node {$\bullet$} node [above right] {C};
\draw (4,0) node {$\bullet$} node [below right] {D};
\draw (2,0) node {$\bullet$} node [below] {E};
\draw (0,0) node {$\bullet$} node [below left] {F};
\end{circuitikz}
Circuit électrique à cinq branches
\begin{circuitikz}[scale=0.7]
\draw (0,0) to[R, l_={\footnotesize $R_1$}] (0,4)--(2,4) to [I, l^={\footnotesize $\dfrac{E_1}{R_1}$}] (2,0) -- (4,0)
to [R, i_<=$i_2$, l_={\footnotesize $R_2$}] (4,4) -- (6,4) to [I, l^={\footnotesize $\dfrac{E_3}{R_3}$}] (6,0) --(8,0)
to[R, l_={\footnotesize $R_3$}] (8,4) ;
\draw (0,0) -- (2,0);
\draw (2,4) -- (4,4);
\draw (4,0) -- (6,0);
\draw (6,4) -- (8,4);
\end{circuitikz}
Circuit complexe avec interrupteur
\begin{circuitikz}
\draw (0,0) to[V, v=$E$] (0,3) to [R, l=$R$] (3,3) to[cspst=K] (5,3);
\draw (3,3) to [R, l_=$R$] (3,0) -- (0,0);
\draw (5,3) to [C, l=$C$] (5,0) -- (3,0);
\draw (5,3) to [R, l=$R$] (7,3) to [V, v<=$E$] (7,0) -- (5,0);
\draw[-triangle 45] (4.4,1) -- (4.4,2) node [below=0.5cm] [left] {u(t)};
%-triangle 45 est un style de flèche
\end{circuitikz}
Boîte AOIP sur GBF
\begin{circuitikz}[scale=0.4]
\draw (0,-1) -- (0,2.9);
\filldraw [fill=white,draw=black] (0,3) circle (1.1cm) node {GBF};
\draw (0,4.1) -- (0,6.8) -- (4.2,6.8) -- (4.2,4.8);
\draw (0,-1) -- (7.8,-1) -- (7.8,1.2);
\draw [-triangle 60] (0,6.8) --++ (-1.5,+1.5) node [left] {Voie 1};
\draw (0,-1) -- (0,-2);
\draw (-0.75,-2) -- (0.75,-2);
\foreach \x in {-0.75,-0.5, ...,0.75}%masse
{
\draw (\x,-2)--++(-0.5,-0.5);
}
\begin{scope}[xshift=3cm]
%xshift=3cm va permettre de décaler horizontalement cette portion de code sur la droite par rapport au point (0,0)
\draw [-triangle 60] (4.8,4.8) --++ (+3,+3) node [right] {Voie 2};
%\draw [help lines, gray, very thin, step=1] (0,0) grid (6,6);
\draw [scale=1,thick] (0,0) -- (6,0) -- (6,6) -- (0,6) -- cycle;
\draw (1.2,4.8) circle (0.25cm) node [above left, thick] {A};
\draw (1.2,4.8) circle (0.1cm) ;
\draw (4.8,4.8) circle (0.25cm) node [above left, thick] {B};
\draw (4.8,4.8) circle (0.1cm) ;
\draw (4.8,1.2) circle (0.25cm) node [below right, thick] {C};
\draw (4.8,1.2) circle (0.1cm) ;
\draw (3,3) circle (1.5cm) node {$ \times 1000$};
\filldraw [gray!50] (1.7,1.7) circle (0.15cm);
\end{scope}
\end{circuitikz}
Redressement simple alternance
\begin{circuitikz}
\draw (0,0) -- (0,1);
\filldraw [fill=white,draw=black] (0,1.5) circle (0.5cm) node {GBF};
\draw (0,2)--(0,3) to[D, i^>=i] (3,3);
\draw (3,3) to [R, l^=$110\Omega$] (3,0) -- (0,0);
\draw [-triangle 60] (0,3) --++ (-0.5,+0.5) node [left] {Voie 1};
\draw [-triangle 60] (3,3) --++ (+0.5,+0.5) node [right] {Voie 2};
\draw [-triangle 60] (2.5,0.5) -- (2.5,2.5) node [midway, left] {$u_R(t)$};
\draw [-triangle 60] (-0.7,0.5) -- (-0.7,2.5) node [midway, left] {$e(t)$};
\begin{scope}[scale=0.4]
\draw (0,0) -- (0,-1);
\draw (-0.75,-1) -- (0.75,-1);
\foreach \x in {-0.75,-0.5, ...,0.75}%masse
{
\draw (\x,-1)--++(-0.5,-0.5);
}
\end{scope}
\end{circuitikz}
Circuit RL en régime sinusoïdal
\begin{circuitikz}
\draw (0,0) to[V, v=$E\cos \omega \,t$] (0,3) to [R, i>^=$i(t)$, l=$R$] (2.5,3);
\draw (2.5,3) to [L, l_=$L$] (2.5,0);
\draw (2.5,0) -- (0,0);
\draw[-triangle 45] (3,1) -- (3,2.2) node[right=0.5cm] at (2.5,1.5) {$u_L(t)$}; %utilisation de la librairie arrow
\end{circuitikz}
Circuit RLC en régime sinusoïdal : tension aux bornes du condensateur
\begin{circuitikz}
\draw (0,0) to[V, v=$E\cos \omega \,t$] (0,3) to [L, l=$L$] (2.5,3);
\draw (2.5,3) to [R, l=$R$] (5,3);
\draw (5,3) to [C, l=$C$] (5,0);
\draw (5,0) -- (0,0);
\draw[-triangle 45] (4.4,1) -- (4.4,2.2) node[below=0.7cm,left=0.1cm] {$u_C(t)$};
% utilisation de la librairie arrow
\end{circuitikz}
Circuit RLC en régime sinusoïdal : tension aux bornes de la résistance
\begin{circuitikz}
\draw (0,0) to[V, v=$E\cos \omega \,t$] (0,3) to [L, l=$L$] (2.5,3);
\draw (2.5,3) to [C, l=$C$] (5,3);
\draw (5,3) to [R, l=$R$] (5,0);
\draw (5,0) -- (0,0);
\draw[-triangle 45] (4.4,1) -- (4.4,2.2) node[below=0.7cm,left=0.1cm] {$u_R(t)$};
% utilisation de la librairie arrow
\end{circuitikz}
Filtre RC
\begin{circuitikz}
\draw (0,2) to [R, l=$R$] (4,2);
\draw (4,2) to [C, l_=$C$] (4,0);
\draw (4,0) -- (0,0);
\draw[-triangle 45] (4.8,0) -- (4.8,2) node[right, midway] {$\underline{v}\,_s$};
% utilisation de la librairie arrow
\draw[-triangle 45] (-0.2,0) -- (-0.2,2) node[left, midway] {$\underline{v}\,_e$};
\end{circuitikz}
Filtre RC sur GBF
\begin{circuitikz}
\draw (0,0) -- (0,1);
\filldraw [fill=white,draw=black] (0,1.5) circle (0.5cm) node {GBF};
\draw (0,2)--(0,3) to[R, i>^=i] (3,3);
\draw (3,3) to [C, l^=C] (3,0) -- (0,0);
\draw [-triangle 60] (0,3) --++ (-0.5,+0.5) node [left] {Voie 1};
\draw [-triangle 60] (3,3) --++ (+0.5,+0.5) node [right] {Voie 2};
\draw [-triangle 60] (2.4,0.5) -- (2.4,2.5) node [midway, left] {$u(t)$};
\draw [-triangle 60] (-0.7,0.5) -- (-0.7,2.5) node [midway, left] {$e(t)$};
\begin{scope}[scale=0.4]
\draw (0,0) -- (0,-1);
\draw (-0.75,-1) -- (0.75,-1);
\foreach \x in {-0.75,-0.5, ...,0.75} %masse
{
\draw (\x,-1)--++(-0.5,-0.5);
}
\end{scope}
\end{circuitikz}
Quadripôle
\begin{tikzpicture}[scale=0.75]
\draw (0,0) rectangle (2,2) node [midway] {\scriptsize{Générateur}};
\draw (4,0) rectangle (6,2) node [midway] {\scriptsize{Quadripôle}};
\draw (8,0) rectangle (10,2) node [midway] {\scriptsize{Récepteur}};
\draw (1.8,1.6) node {$\bullet$};
\draw (1.8,0.4) node {$\bullet$};
\draw (4.2,1.6) node {$\bullet$};
\draw (4.2,0.4) node {$\bullet$};
\draw (5.8,1.6) node {$\bullet$};
\draw (5.8,0.4) node {$\bullet$};
\draw (8.2,1.6) node {$\bullet$};
\draw (8.2,0.4) node {$\bullet$};
\draw[black,thick, postaction={decorate,decoration={markings,
mark=at position .55 with {\arrow[arrowstyle]{stealth}}}}] (1.8,1.6) -- (4.2,1.6) node[above,midway] {$i_{e}$};
\draw[black,thick, postaction={decorate,decoration={markings,
mark=at position .55 with {\arrow[arrowstyle]{stealth}}}}] (5.8,1.6) -- (8.2,1.6) node[above,midway] {$i_{s}$};;
\draw [black,thick,-latex] (3.6,0.5) -- (3.6,1.5) node [left,midway] {$V_e$};
\draw [black,thick,-latex] (7.6,0.5) -- (7.6,1.5) node [left,midway] {$V_s$};
\draw [black,thick](1.8,0.4) -- (4.2,0.4);
\draw [black,thick](5.8,0.4) -- (8.2,0.4);
\end{tikzpicture}
Source dans un boîtier
\begin{circuitikz}
\draw (0,0) to[V, v=$E_0$] (0,3) to [R, l=$R_0$] (3,3)--(4,3);
\draw (4,3) to [R, l^=$R_C$] (4,0) -- (0,0);
%le ^ signifie que le nom du conducteur sera à droite du symbole (car ici, pour dessiner ce symbole on va de haut en bas, donc au dessus signifie à droite)
\fill [gray!50,opacity=0.5] (-1.25,-0.5) rectangle (2.5,3.75) ;
%opacity = fonction de transparence, en pourcentage
\node at (0.6,-0.25) [] {\scriptsize Boîtier};
\draw [->,-latex] (3,3)--++(0.2,0) node [above] {$i$};
\draw [->,-latex] (3.25,0.25)--++(0,2.5) node [midway,left] {$U$};
\end{circuitikz}
Mécanique
Force centrifuge
\begin{tikzpicture}[scale=0.8]
\draw (0,0) ellipse (3cm and 1cm);
\draw [thick, -latex] (0,-3) -- (0,3) node [left] {z};
\draw (0,-2) node {$\bullet$} node [above left] {O};
\draw (0,-3) node [above left] {z'};
\draw node at (2,0.73) {$\bullet$};
\draw (2,0.35) node [right=0.02cm] {M};
\draw (0,0) node {$\bullet$} node [above left] {H};
\draw [xshift=0.3cm,rotate around={180:(-0.4,2.2)},line width=1pt,-stealth] (-0.25,2) arc (-30:210:0.3cm and 0.2cm) node[below left=0.4cm] {$\omega$};
%rotate around permet de faire une rotation autour d'un point particulier (ici de 180° autour de (-0.4,2.2)
%line width gère l'épaisseur du trait
\draw [very thick,-latex] (2,0.73) --++ (1.2,0.45) node[below=0.15cm] {$\overrightarrow{F_{ie}}$};
\draw [very thick,-latex] (2,0.73) --++ (-1.2,-0.45)node[below=0.15cm] {$\overrightarrow{F_{0}}$};
\draw [very thick,-latex] (2,0.73) --++ (0,1.2)node[above] {$\overrightarrow{R}$};
\draw [very thick,-latex] (2,0.73) --++ (0,-1.2)node[below] {\colorbox{white}{$\overrightarrow{P}$}};
\draw [red, very thick, -stealth] (2,0.73) --++ (-0.7,0.3) node [above] {$\overrightarrow{t}$};
\draw [red, very thick, -stealth] (2,0.73) --++ (-0.7,-0.25) node [below] at (1.5,0.5) {$\overrightarrow{n}$};
\draw [dotted] (0,0) -- (2,0.73);
\end{tikzpicture}
Elongation d'un ressort vertical
\begin{tikzpicture} [scale=0.75, decoration={coil,aspect=0.4,segment length=3mm,amplitude=3mm}]
%decoration : gère l'aspect du ressort par l'instruction decorate
\tikzset{ressort/.style={thick,gray,smooth}} %définition d'un style de ressort
\draw [dashed] (2,-4.5) --++ (4,0);
\draw node [left] at (2,-4.5) {O};
\draw [->] (2,-4.5) --++ (0,-2) node [left] {$x$};
\draw [dashed] (2,-5.5) --++ (4,0) ;
\draw node [left] at (2,-5.5) {$x(t)$} ;
%ressort
\begin{scope}
\draw[ressort,decorate] (0,-0.3)--(0,-3) ;
\draw[thick,gray] (0,0) -- (0,-0.3);
\fill [pattern=north east lines] (-0.5,0) rectangle (0.5,0.3); %bloc qui tient le ressort
\draw[thick] (-0.5,0) -- (0.5,0); %bloc qui tient le ressort
%fin ressort
\draw[line width=0.5pt,<->,>=triangle 45](-0.8,0) -- (-0.8,-3) node [midway,left] {$l_0$} ;
\end{scope}
\begin{scope}[xshift=3cm]%Décalage horizontale de 3 cm
\draw[ressort,decorate] (0,-0.3)--(0,-4) ;
%bloc qui tient le ressort
\draw[thick,gray] (0,0) -- (0,-0.3);
\fill [pattern=north east lines] (-0.5,0) rectangle (0.5,0.3);
\draw[thick](-0.5,0)--(0.5,0);
%fin ressort
\draw[line width=0.5pt,<->,>=triangle 45](-0.8,0) -- (-0.8,-4.1) node [midway,left] {$l_{éq}$} ;
\draw [thick](0,-4)--(0,-4.5);
\draw [rounded corners=4pt,color=white,ball color=gray,smooth] (0,-4.5) circle (0.4) ;
\draw [very thick,-latex] (0,-4.5)--++(0,-1.5) node [midway,right=0.25cm] {$\overrightarrow{P}$};
\draw [very thick,-latex] (0,-4.15)--(0,-2.9) node [midway,right=0.25cm] {$\overrightarrow{T_{éq}}$};
\end{scope}
\begin{scope}[xshift=6cm]
\draw[ressort,decorate] (0,-0.3)--(0,-5) ;
%bloc qui tient le ressort
\draw[thick,gray] (0,0) -- (0,-0.3);
\fill [pattern=north east lines] (-0.5,0) rectangle (0.5,0.3);
%pattern définit un style de remplissage de la forme
\draw[thick](-0.5,0)--(0.5,0);
%fin ressort
\draw[line width=0.5pt,<->,>=triangle 45](-0.8,0) -- (-0.8,-5.1) node [midway,left] {$l(t)$} ;
\draw [thick](0,-5)--(0,-5.5);
\draw [rounded corners=4pt,color=white,ball color=gray,smooth] (0,-5.5) circle (0.4) ;
%rounded corners = coins arrondis de tant de points
%ball color = style de forme
\draw [very thick,-latex] (0,-5.5)--++(0,-1.5) node [midway,above=0.1cm,right=0.25cm] {$\overrightarrow{P}$};
\draw [very thick,-latex] (0,-5.15)--(0,-3.25) node [midway,right=0.25cm] {$\overrightarrow{T}$};
\end{scope}
\begin{scope}[xshift=-1cm,yshift=-5.5cm]
\draw [rounded corners=4pt,color=white,ball color=gray,smooth] (0,-2.5) circle (0.4) node [right=0.75cm,black] {: objet M de masse m} ;
\draw[ressort,decorate,rotate=0] (-0.75,-3.5)--(0.75,-3.5) node [right=0cm,black] {: ressort de constante de raideur k};
\end{scope}
\end{tikzpicture}
Régime forcé d'un oscillateur élastique vertical
\begin{tikzpicture}[scale=0.75, decoration={coil,aspect=0.4,segment length=3mm,amplitude=3mm}]
%ressort
\tikzset{ressort/.style={thick,gray,smooth}}
\begin{scope}[xshift=5cm]
\draw[ressort,decorate] (0.3,2)--(0.3,-1) ;
\fill [pattern=north east lines] (-0.5,4.2) rectangle (0.5,4.5); %bloc qui tient le ressort
\draw[thick,gray] (-0.5,4.2) -- (0.5,4.2); %bloc qui tient le ressort
\draw[thick,gray] (0.3,3.7) -- (0.3,2); %tige au dessus ressort
\draw[thick,gray] (0,4.2) -- (0,3.9);
%fin ressort
\end{scope}
\draw (0,-2) rectangle (2,-0.5) node [midway, above=0.15cm ] {Moteur};
\draw (5,3.6) circle (0.28cm);
\draw (1.5,-1.5) circle (0.28cm);
\filldraw [black] (1.7,-1.3) circle (0.08cm);
\draw [gray] (1.7,-1.3) -- (4.7,3.7);
\draw [thick, gray] (5.3,-1)--(5.3,-1.9);
\draw [color=white,ball color=gray,smooth] (5.3,-1.7) circle (0.4) ;
%eprouvette rempli de solution
\draw [gray, very thick] (4.6,-4) --++ (0,5);
\draw [gray, very thick] (6.0,-4) --++ (0,5);
\draw [gray, very thick] (3.6,-4) --++ (3.4,0);
\fill [gray,opacity=0.2] (4.6,-4) rectangle (6.0,0);
%fin eprouvette
\end{tikzpicture}
Enregistrement rhéographique des oscillations d'un ressort vertical
\begin{tikzpicture}[scale=0.75, decoration={coil,aspect=0.4,segment length=3mm,amplitude=3mm}]
\tikzset{ressort/.style={thick,gray,smooth}}
\begin{scope}[xshift=0cm]
%ressort
\draw[ressort,decorate] (0,2)--(0,-1) ;
\fill [pattern=north east lines] (-0.5,3.7) rectangle (0.5,4.0);
\draw[thick,gray] (-0.5,3.7) -- (0.5,3.7);
\draw[thick,gray] (0,3.7) -- (0,2);
\draw [thick, gray] (0,-1)--(0,-1.9);
\draw [color=white,ball color=gray,smooth] (0,-1.7) circle (0.4) node [black,below right=0.2cm] {\scriptsize{M}} ;
%fin ressort
%eprouvette
\draw [gray,very thick] (-1,-4) --++ (0,5);
\draw [gray,very thick] (1,-4) --++ (0,5);
\draw [gray,very thick] (-2,-4) --++ (4,0);
\fill [gray,opacity=0.2] (-1,-4) rectangle (1,0);
%fin eprouvette
%générateur
\draw (3,-3.3) rectangle++ (3,1.5) node [midway, above=0.1cm] {Générateur};
\draw [black] (5.2,-2.7) circle (0.1cm) node [below=0.025cm] {\scriptsize{Masse}};
\filldraw [black] (3.8,-2.7) circle (0.1cm) node [below=0.025cm] {\scriptsize{+}};
% fin générateur
%oscilloscope
\draw (3,-1) rectangle++ (3,2) node [midway, above=0.1cm] {Oscilloscope};
\draw node at (3.7,-0.7) {\scriptsize{Voie 1}};
\filldraw [black] (3.4,-0.3) circle (0.1cm);
\draw [black] (4,-0.3) circle (0.1cm);
%fin oscilloscope
%fils
\draw [red] (3.8,-2.7) --++ (-2,0) --++ (0,4) --++ (-1.1,0) --++ (0,-1.5);
\draw [black] (5.2,-2.7) --++ (1.5,0) --++ (0,-1.75) --++ (-9,0) --++ (0,5.75) --++ (1.6,0) --++ (0,-5);
\filldraw [black] (-0.85,-3.8) rectangle++ (0.3,0.1) node [right] {\scriptsize{B}};
\filldraw [red] (0.55,-0.2) rectangle++ (0.3,0.1) node [below] at (0.7,-0.2) {\scriptsize{A}};
\draw [red] (3.4,-0.3) --++ (-0.7,0) --++ (0,3) --++ (-2.7,0) node [left, black] {\scriptsize{M'}};
\draw [black] (4,-0.3) --++ (2.7,0) --++ (0,-2.4);
%fin fils
\end{scope}
\end{tikzpicture}
Voici un pdf qui rassemble toutes les figures intéressantes produites avec tikz pour la mécanique :
Vous pouvez télécharger :
- Le fichier pdf ci-dessus, vous pourrez alors exporter chaque figure en image ;
- Le fichier tex correspondant, ou vous trouverez les codes de chaque figure ;
- Le preambule.tex inclut dans le fichier tex pour pouvoir compiler les figures (attention à son emplacement relatif) ;
- Les deux images incluses dans ces figures : capitaine et main.
Thermodynamique
Expérience d'hydrostatique
\begin{tikzpicture}[scale=3]
%------------
%tube en U
%------------
\begin{scope} [shift=({0.5,0.5}),scale=0.75]
%Ce shift avec deux coordonnées permet de déplacer la portion de code horizontalement et verticalement
%remplissages
\draw[SkyBlue!30,line width=9pt](0,-0.8) arc (180:360:0.5);
\filldraw [SkyBlue!30] (-0.075,-0.8) rectangle++ (0.15,0.25);
%SkyBlue est une couleur du package xcolor
\filldraw [SkyBlue!30] (0.925,-0.8) rectangle++ (0.15,0.25);
\filldraw [SkyBlue!30,draw=black,line width=0.05pt] (0,-0.55) ellipse (0.075cm and 0.05cm);
\filldraw [SkyBlue!30,draw=black,line width=0.05pt] (1,-0.55) ellipse (0.075cm and 0.05cm);
%position2
\begin{scope}[shift=({0,0.25}),opacity=0.7]
\filldraw [SkyBlue!30] (0.925,-0.8) rectangle++ (0.15,0.25);
\filldraw [SkyBlue!30,draw=black,line width=0.05pt] (1,-0.55) ellipse (0.075cm and 0.05cm);
\end{scope}
\begin{scope}[shift=({0,-0.25}),opacity=0.7]
\filldraw [SkyBlue!30,draw=black,line width=0.05pt] (0,-0.55) ellipse (0.075cm and 0.05cm);
\end{scope}
%tube
\filldraw [fill=black!60] (0,0) ellipse (0.075cm and 0.05cm);
\draw (1,0) ellipse (0.075cm and 0.05cm);
\draw (-0.075,0) --++ (0,-0.8);
\draw (0.075,0) --++ (0,-0.8);
\draw (0.925,0) --++ (0,-0.8);
\draw (1.075,0) --++ (0,-0.8);
\draw (-0.075,-0.8) arc (180:360:0.575);
%arc circulaire partant du point entre parenthèses, de l'angle 180 à l'angle 360, d'un rayon de 0.575 cm
\draw (0.075,-0.8) arc (180:360:0.425);
\end{scope}
%------------
%FIN
%------------
%récipient
\begin{scope}[shift=({-1,-1})]
\filldraw [fill=SkyBlue!30,draw=black] (0,0) to [bend right=40] (1,0);
%to [bend right=40] permet de dissiner un arc courbé à droite entre deux points, 40° représente "l'angle de contact" avec les points
\fill [SkyBlue!30] (0,0) rectangle (1,0.75);
\filldraw [fill=SkyBlue!30,draw=black] (0.5,0.75) ellipse (0.5cm and 0.15cm);
\draw [draw=black] (0.5,1.15) ellipse (0.5cm and 0.15cm);
\draw (0,0) --++ (0,1.15);
\draw (1,0) --++ (0,1.15);
\end{scope}
%sonde1
\begin{scope}[shift=({-0.6,-0.275})]
\filldraw [black] (0,0) rectangle++ (0.05,0.35);
\filldraw [black] (-0.1,-0.1) rectangle++ (0.4,0.1);
\end{scope}
%sonde2
\begin{scope}[shift=({-0.6,-0.6}),opacity=0.25]
\filldraw [black] (0,0) rectangle++ (0.05,0.35);
\filldraw [black] (-0.1,-0.1) rectangle++ (0.4,0.1);
\end{scope}
%tuyau
\draw [black!60,line width=4pt] (-0.575,0.07) .. controls ++(0,1) and ++(-0.1,0.5) .. (0.5,0.5);
%pointillés
\draw [very thin,dashed,gray] (0.25,0.09) -- (1.5,0.09);
\draw (0.5,0.09) --++(0,0.025) (0.5,0.09) --++ (0,-0.025) (0.5,0.09) --++ (-0.025,0) (0.5,0.09) --++ (0.025,0);
\node at (0.35,0.2) {A};
\draw (1.25,0.09) --++(0,0.025) (1.25,0.09) --++ (0,-0.025) (1.25,0.09) --++ (-0.025,0) (1.25,0.09) --++ (0.025,0);
\node at (1.4,-0.00) {B};
\begin{scope}[shift=({0,-0.19}),opacity=0.35]
\draw (0.5,0.09) --++(0,0.025) (0.5,0.09) --++ (0,-0.025) (0.5,0.09) --++ (-0.025,0) (0.5,0.09) --++ (0.025,0);
\node at (0.7,0.075) {A'};
\end{scope}
\begin{scope}[shift=({0,0.185}),opacity=0.35]
\draw (1.25,0.09) --++(0,0.025) (1.25,0.09) --++ (0,-0.025) (1.25,0.09) --++ (-0.025,0) (1.25,0.09) --++ (0.025,0);
\node at (1.435,0.1) {B'};
\end{scope}
\draw [|<->|] (1,0.1)--++(0,0.2) node [midway,left] {h};
\draw [|<->|] (-1.15,-0.65)--++(0,0.35) node [midway,left] {$\ell$};
\end{tikzpicture}
Diagramme de Clapeyron
\begin{tikzpicture}
\draw [->,-latex](0,0) --++ (0,6) node [above] {$P$};
\draw [->,-latex] (0,0) --++ (7,0) node [above] {$V$};
\draw [dashed] (0,1) node [left] {$P_1$} --++ (5,0);
\draw [dashed] (0,5) node [left] {$P_2$} --++ (2,0);
\draw [dashed] (2,0) node [below] {$V_1$} --++ (0,4);
\draw [dashed] (5,0) node [below] {$V_2$} --++ (0,3);
\node at (0,0) {$\bullet$};
\node at(2,5) [above left] {3};
\node at(2,2) [below left] {2};
\node at(5,3) [above right] {4};
\node at(5,1) [below right] {1};
\draw [simple] (5,1) to [bend left=10] (2,2) ;
\node at (3.5,1.15) [rotate=-15]{ \scriptsize Compression};
\draw [simple] (2,2) --++ (0,3) node [sloped,above,midway] {\scriptsize Chauffage};
\draw [simple] (2,5) to [bend right=10] (5,3);
\node at (3.5,3.60) [rotate=-30] { \scriptsize détente};
\draw [simple] (5,3) --++ (0,-2) node [sloped,above=0,midway] {\scriptsize Refroidissement};
%sloped permet une écriture verticale
\end{tikzpicture}
Optique
Un grand merci à Jimmy Roussel qui, en partageant son dossier de figures tikz, m'a permis de progresser. Certaines parties de codes ci-dessous sont de lui (comme le code de l'oeil, entre autres ...).
Voici les styles qui ont été définis, pour le tracé des rayons, pour la réalisation d'un oeil, ...
\tikzstyle double=[postaction={decorate,decoration={markings, mark=at position .5 with {\arrow[scale=1,>=stealth]{>>}}}}]
%double flèches reverse
\tikzstyle doublerev=[postaction={decorate,decoration={markings, mark=at position .5 with {\arrow[scale=1,>=stealth]{<<}}}}]
%simple flèche grande taille
\tikzstyle simplegros=[postaction={decorate,decoration={markings, mark=at position .5 with {\arrow[scale=1.5,>=stealth]{>}}}}]
%simple flèche grande taille reverse
\tikzstyle simplegrosrev=[postaction={decorate,decoration={markings, mark=at position .5 with {\arrow[scale=1.5,>=stealth]{<}}}}]
%double flèches grande taille
\tikzstyle doublegros=[postaction={decorate,decoration={markings, mark=at position .5 with {\arrow[scale=1.5,>=stealth]{>>}}}}]
%double flèche grande taille reverse
\tikzstyle doublegrosrev=[postaction={decorate,decoration={markings, mark=at position .5 with {\arrow[scale=1.5,>=stealth]{<<}}}}]
%oeil, le paramètre, indiqué entre crochet permettra de positionner l'oeil avec un shift, rotate ...
\newcommand{\oeil}[1][]
{
\draw[#1,thick,rounded corners] (-15:1)--(0,0)--(15:1);
\draw[#1] (-15:0.8) arc (-15:15:0.8);
\draw[#1,fill=black] (0:0.75) ellipse(0.05 and 0.1);
}
Microscope
\begin{tikzpicture}[scale=1]
%axe optique
\draw[thin,->](-2,0)--++(14.5,0)node[above right,fill=white]{\tiny +};
\def \xA{-1.2}; %position de l'objet par rapport à la première lentille
\def \yB{-0.25};%hauteur de l'objet
\coordinate (O1) at (0,0);%centre optique de la première lentille
\coordinate (O2) at (8,0);%centre optique de la deuxième lentille
\def \fUn{1};%focale de la première lentille
\def \fDe{2};%focale de la première lentille
\def \xAA {(\xA*\fUn)/(\xA+\fUn)};%position de l'image
%Les calculs s'effectuent entre accolades
\def \yBB {(\xAA*\yB)/(\xA)};%hauteur de l'image
\coordinate (A) at (\xA,0);%position de l'objet
\coordinate (B) at (\xA,\yB);%sommet de l'objet
\coordinate (AA) at ({\xAA},0);
\coordinate (BB) at ({\xAA},{\yBB});
%Les grandeurs calculées s'utilisent entre accolades
\draw[|->, thick] (A)node[above]{A}--(B)node[below]{B};
\draw[|->, thick] (AA)node[below]{ $\mathrm{A}_1$}--(BB)node[above]{ $\mathrm{B}_1$};
\draw[shift={(O1)},ultra thick,<->,>=latex] (0,-2)--++(0,4) node[above]{$\mathcal{L}_1$};%lentille convergente
\draw[shift={(O2)},ultra thick,<->,>=latex] (0,-3)--++(0,6) node[above]{$\mathcal{L}_2$};%lentille convergente
\draw [simple,red] (B) -- (O1) -- (BB) --++ ($0.335*(BB)-0.335*(O1)$);
\draw [simple,red] (8,1.68) -- (10,0.4) --++ ($1.0*(10,0.4)-1.0*(8,1.68)$);
\draw [dashed] (O2) --++(-2,-0.4) (O2)--++($1.5*(O2)-1.5*(6,-0.4)$);
\draw [dashed,red] (8,1.68)--++($1.0*(8,1.68)-1.0*(10,0.4)$);
\draw [double, blue] (B) --++ (1.2,0);
\draw [double, blue] (B) ++ (1.2,0) -- (1,0) --++($7*(1,0)-7*(0,-0.25)$);
\draw [dashed] (O2) --++(-2,-0.5) (O2)--++($1.5*(O2)-1.5*(6,-0.5)$);
\draw [double,blue] (8,1.76) -- (10,0.48) --++ ($1.0*(10,0.48)-1.0*(8,1.76)$);
\draw [dashed,blue] (8,1.76)--++($1.0*(8,1.76)-1.0*(10,0.48)$);
\draw [dashed,green] (O2)-- (BB)--++($1.0*(BB)-1.0*(O2)$);
\draw[|->, thick] (A)node[above]{A}--(B)node[below]{B};
\draw[|->, thick] (AA)node[below]{ $\mathrm{A}_1$}--(BB)node[above]{ $\mathrm{B}_1$};
\foreach \x/\z in {O1/\fUn}{%boucle à deux entrées
\draw[shift={(\x)}] (0,0) node[above right] {$\mathrm{O}_1$};
\draw[shift={(\x)}] (\z,2pt) --++ (0,-4pt) node[below right] {$\mathrm{F'}_1$};
\draw[shift={(\x)}] ({-\z},2pt) --++ (0,-4pt) node[above right] {$\mathrm{F}_1$};
}
\foreach \x/\z in {O2/\fDe}{
\draw[shift={(\x)}] (0,0) node[above right] {$\mathrm{O}_2$};
\draw[shift={(\x)}] (\z,2pt) --++ (0,-4pt) node[below] {$\mathrm{F'}_2$};
\draw[shift={(\x)}] ({-\z},2pt) --++ (0,-4pt) node[above right] {$\mathrm{F}_2$};
}
\draw [dotted,thin] (10,0) --++(0,-0.05) (10,0) --++(0,+0.05) ;
\draw [thick,->,-latex] (5.9,3.05) --++ (-0.5,0.30);
\node at (6.0,3.3) {\tiny \text{Image}};
\draw (7.5,0) to [bend left] (7.55,0.27);
\node at (7.3,0.2) [] {$\alpha'$};
\begin{scope}[shift=({2.63,0})]
\draw (7.5,0) to [bend left] (7.55,0.27);
\node at (7.3,0.2) [] {$\alpha'$};
\end{scope}
\oeil[shift={(12.75,-1.35)},rotate=145,scale=0.9];
\end{tikzpicture}
Lunette de Galilée
\begin{tikzpicture}[scale=1]
%axe optique
\draw[thin,->](-2.5,0)--++(12,0)node[above right,fill=white]{\tiny +};
\coordinate (O1) at (0,0);%centre optique de la première lentille
\coordinate (O2) at (6,0);%centre optique de la première lentille
\def \fUn{8}; %focale de la première lentille
\def \fDe{-2};%focale de la première lentille
\draw[shift={(O1)},ultra thick,<->,>=latex] (0,-2)--++(0,4) node[above]{$\mathcal{L}_1$};%lentille convergente
\draw[shift={(O2)},ultra thick,>-<,>=latex] (0,-2)--++(0,4) node[above]{$\mathcal{L}_2$};%lentille divergente
\draw [thick,red, simple] (-2,0.5) --(0,0)--++($3*(0,0)-3*(-2,0.5)$) ; %rayon rouge qui passe par le centre O1
\draw [dashed] (6,0) --++(-2,0.5) (6,0)--++(2,-0.5); %parallèle pointillé noir passant par O2
\draw [dashed] (4,0.5) --++($0.5*(4,0.5)-0.5*(6,0)$) ;%parallèle pointillé noir passant par O2
\draw [dashed,red] (4,0.5) -- (6,-1.5); %prolongement pointillé du rayon rouge divergent
\draw [dashed,red] (4,0.5)--++($0.5*(4,0.5)-0.5*(6,-1.5)$) ;%prolongement pointillé du rayon rouge divergent
\draw [dashed,red] (6,-1.5) --++ ($0.35*(6,-1.5)-0.35*(0,0)$); %prolongement donnant l'image intermédiaire
\draw [thick,red, simple](6,-1.5)--++($0.9*(6,-1.5)-0.9*(4,0.5)$) ; %rayon rouge divergent de l'oculaire
\draw [thick,blue, double] (-2,1) --(0,0.5); %rayon bleu avant O1
\draw [thick,blue, double] (0,0.5)--++($-0.75*(0,0.5)+0.75*(8,-2)$); %rayon bleu jusqu'à L2
\draw [dashed,blue] (0,0.5)++($-0.75*(0,0.5)+0.75*(8,-2)$)--++($-0.3*(0,0.5)+0.3*(8,-2)$); %prolongement bleu donnant image intermédiaire
\draw [thick,blue, double](6,-1.38)--++($0.9*(6,-1.38)-0.9*(4,0.62)$) ;%rayon bleu divergent de l'oculaire
\draw [dashed,blue] (4,0.62) -- (6,-1.38); %prolongement pointillé du rayon bleu divergent
\draw [dashed,blue] (4,0.62)--++($0.5*(4,0.62)-0.5*(6,-1.38)$) ; %prolongement pointillé du rayon bleu divergent
\draw [dashed] (6,0) --++(-2,0.62) (6,0)--++(2,-0.62); %parallèle pointillé noir passant par O2
\draw [dashed] (4,0.62) --++($0.5*(4,0.62)-0.5*(6,0)$) ; %parallèle pointillé noir passant par O2
%Points particuliers
\foreach \x/\z in {O1/\fUn}{
\draw[shift={(\x)}] (0,0) node[above right] {$\mathrm{O}_1$};
\draw[shift={(\x)}] (\z,2pt) --++ (0,-4pt) node[below right] {$\mathrm{F'}_1$};
}
\foreach \x/\z in {O2/\fDe}{
\draw[shift={(\x)}] (0,0) node[above right] {$\mathrm{O}_2$};
\draw[shift={(\x)}] (\z,2pt) --++ (0,-4pt) node[below] {$\mathrm{F'}_2$};
\draw[shift={(\x)}] ({-\z},2pt) --++ (0,-4pt) node[above right] {$\mathrm{F}_2$};
}
%Montrer où est l'image
\draw [thick,->,-latex] (2.9,1.6) --++ (-0.4,0.4);
\node at (3.1,1.8) {\tiny \text{Image}};
%image intermédiaire
\draw[|->, thick,dashed] (8,0)node[above left]{ $\mathrm{A}_1$}--++(0,-2) node[below]{$\mathrm{B}_1$};
\draw [dashed] (8,-2) --(O2); %parallèle pointillé noir passant par O2
%angle alpha
\draw (-1.2,0) to [bend left] (-1.2,0.3);
\node at (-1.4,0.15) [] {\scriptsize $\alpha$};
%angle alpha prim
\draw (5.0,0) to [bend left] (4.9,-0.27);
\node at (5.3,-0.2) [] {\scriptsize $\alpha'$};
\begin{scope}[shift=({1.4,0})]
\draw (5.0,0) to [bend left] (4.9,-0.27);
\fill [white] (5.3,-0.2) rectangle++ (0.15,-0.15) (5.3,-0.2) rectangle++ (-0.15,-0.15) (5.3,-0.2) rectangle++ (-0.15,0.15) (5.3,-0.2) rectangle++ (0.15,0.15);
\node at (5.3,-0.2) [] {\scriptsize$\alpha'$};
\end{scope}
%oeil
\oeil[shift={(8.275,-3.75)},rotate=132,scale=0.75];
\end{tikzpicture}
Lunette astronomique
\begin{tikzpicture}[scale=1]
\draw[thin,->](-2.5,0)--++(13,0)node[above right,fill=white]{\tiny +};
\coordinate (O1) at (0,0);%centre optique de la première lentille
\coordinate (O2) at (6,0);%centre optique de la première lentille
\def \fUn{4};%focale de la première lentille
\def \fDe{2};%focale de la première lentille
\draw[shift={(O1)},ultra thick,<->,>=latex] (0,-2)--++(0,4) node[above]{$\mathcal{L}_1$};%lentille convergente
\draw[shift={(O2)},ultra thick,<->,>=latex] (0,-3)--++(0,6) node[above]{$\mathcal{L}_2$};%lentille convergente
\draw [thick,red, simple] (-2,0.5) --(0,0)--++($3*(0,0)-3*(-2,0.5)$) ; %rayon rouge qui passe par le centre O1
%
\draw [dashed] (6,0) --++(-2,0.5) (6,0)--++(2,-0.5); %parallèle pointillé noir passant par O2
\draw [dashed] (8,-0.5) --++($0.5*(8,-0.5)-0.5*(O2)$) ;%parallèle pointillé noir passant par O2
\draw [red,dashed] (6,-1.5) --++ ($1.5*(6,-1.5)-1.5*(8,-0.5)$); %prolongement rayon vers image
\draw [thick,red, simple](6,-1.5)-- (8,-0.5)--++($0.725*(8,-0.5)-0.725*(6,-1.5)$) ; %rayon rouge divergent de l'oculaire
\draw [thick,blue, double] (-2,1) --(0,0.5); %rayon bleu avant O1
\draw [thick,blue, double] (0,0.5)--++($-1.5*(0,0.5)+1.5*(4,-1)$); %rayon bleu jusqu'à L2
\draw [thick,blue, double](6,-1.75)--++($1.775*(8,-0.75)-1.775*(6,-1.75)$) ;%rayon bleu divergent de l'oculaire
\draw [blue,dashed] (6,-1.75) --++ ($1.5*(6,-1.75)-1.5*(8,-0.75)$); %prolongement rayon vers image
\draw [dashed] (6,0) --++(-2,0.75) (6,0)--++(2,-0.75); %parallèle pointillé noir passant par O2
\draw [dashed] (6,0)++(2,-0.75) --++($0.5*(8,-0.75)-0.5*(6,0)$) ; %parallèle pointillé noir passant par O2
%Points particuliers
\foreach \x/\z in {O1/\fUn}{
\draw[shift={(\x)}] (0,0) node[below left] {$\mathrm{O}_1$};
\draw[shift={(\x)}] (\z,2pt) --++ (0,-4pt) node[below right] {$\mathrm{F'}_1$};
}
\foreach \x/\z in {O2/\fDe}{
\draw[shift={(\x)}] (0,0.1) node[above left] {$\mathrm{O}_2$};
\draw[shift={(\x)}] (\z,2pt) --++ (0,-4pt) node[above left] {$\mathrm{F'}_2$};
\draw[shift={(\x)}] ({-\z},2pt) --++ (0,-4pt) node[above right] {$\mathrm{F}_2$};
}
\draw [dotted,thin] (8,0) --++ (0,2) (8,0) --++ (0,-2); %plan focal image L2
\draw [thick,->,-latex] (3,-3.1) --++ (-0.5,-0.3);
\node at (2.5,-3.1) {\tiny \text{Image}};
\draw[|->, thick,dashed] (4,0)node[above left]{ $\mathrm{A}_1$}--++(0,-1) node[below]{$\mathrm{B}_1$};
\draw [dashed] (4,-1) --++($2.25*(O2)-2.25*(4,-1)$); %parallèle pointillé noir passant par O2
%Angle alpha
\draw (-1.2,0) to [bend left] (-1.2,0.3);
\node at (-1.4,0.15) [] {\scriptsize $\alpha$};
%angles alpha prim
\draw (5.4,0) to [bend right] (5.5,-0.27);
\node at (5.2,-0.15) [] {\scriptsize $\alpha'$};
\begin{scope}[rotate=180,shift=({-12.05,0})]
\draw (5.4,0) to [bend right] (5.5,-0.27);
\node at (5.2,-0.2) [] {\scriptsize $\alpha'$};
\end{scope}
%oeil
\oeil[shift={(10.15,0.5)},rotate=210,scale=0.75];
\end{tikzpicture}
Profondeur de champ et focale
\begin{tikzpicture}[scale=1]
\begin{scope} %Portion de code isolé dans la figure
\node at (-0.6,0) { \centering \boxed{\textbf{\small Plus la focale est courte, plus la profondeur de champ est grande}}};
\end{scope}
\begin{scope}[shift=({0,-3.5})] %Portion de code isolé et déplacé de 3.5 vers le bas
\def \taillehaut{2.5}; %taille de la lentille
\def \taillebas{2.5};%taille de la lentille
\def \xA{-5};%position de l'objet
\def \xAA {(\xA*\f)/(\xA+\f)};%position de l'image
\def \xB{-6.75};%position de l'objet
\def \xBB {(\xB*\f)/(\xB+\f)};%position de l'image
\def \xC{-4};%position de l'objet
\def \xCC {(\xC*\f)/(\xC+\f)};%position de l'image
\coordinate (O1) at (0,0);%centre optique de la première lentille
\coordinate (A) at (\xA,0);%position de l'objet
\coordinate (B) at (\xB,0);%position de l'objet
\coordinate (C) at (\xC,0);%position de l'objet
\def \f{1.5};%focale de la première lentille
\coordinate (F') at (\f,0);
\coordinate (A') at ({\xAA},0);%position de l'image
\coordinate (B') at ({\xBB},0);%position de l'image
\coordinate (C') at ({\xCC},0);%position de l'image
%rectangle grisé de profondeur de champ
\fill [gray!50,opacity=0.75] (-4,0) rectangle (-6.75,1);
\node at (A) {$\bullet$} ;
\node at (B) {$\bullet$} ;
\node at (C) {$\bullet$} ;
\draw[thin,->](-7.5,0)--++(13,0)node[above right,fill=white]{\tiny +};
\draw[shift={(O1)},ultra thick ,<->,>=latex] (0,-\taillebas)--(0,\taillehaut) node[above]{\scriptsize Objectif de focale $\mathrm{f}_1$};%lentille convergente
\draw[,red,simple] (A)--(0,2);
\draw[,red,simple] (0,2)--(A')--++($0.35*(A')-0.35*(0,2)$);
\draw[,red,simple] (A)--(0,-2);
\draw[,red,simple] (0,-2)--(A')--++($0.35*(A')-0.35*(0,-2)$);
\draw[,blue,simple] (B)--(0,2);
\draw[,blue,simple] (0,2)--(B')--++($0.35*(B')-0.35*(0,2)$);
\draw[,blue,simple] (B)--(0,-2);
\draw[,blue,simple] (0,-2)--(B')--++($0.35*(B')-0.35*(0,-2)$);
\draw[purple,simple] (C)--(0,2);
\draw[purple,simple] (0,2)--(C')--++($0.35*(C')-0.35*(0,2)$);
\draw[purple,simple] (C)--(0,-2);
\draw[purple,simple] (0,-2)--(C')--++($0.35*(C')-0.35*(0,-2)$);
\foreach \x/\z in {O1/\f}{
\draw[shift={(\x)}] (0,0) node[below left] { O};
\draw[shift={(\x)}] (\z,2pt) --++ (0,-4pt) node[below left] {F'};
\draw[shift={(\x)}] ({-\z},2pt) --++ (0,-4pt) node[below] {F};
}
%Ellipse, tache nette
\fill [gray, opacity=0.75] (2.14,0) ellipse (0.10 and 0.19);
\draw [|<->|] (-4,1) -- (-6.75,1) node [above,midway] {\tiny Profondeur de champ};
\end{scope}
\begin{scope}[shift=({0,-9.5})]
%\draw [ultra thin, gray!20] (-6,-6) grid[step=0.5] (6,6);
%\draw [thin,gray!50] (-6,-6) grid[step=1] (6,6);
\def \taillehaut{2.5}; %taille de la lentille
\def \taillebas{2.5};%taille de la lentille
\def \xA{-5};%position de l'objet
\def \xAA {(\xA*\f)/(\xA+\f)};%position de l'image
\def \xB{-5.95};%position de l'objet
\def \xBB {(\xB*\f)/(\xB+\f)};%position de l'image
\def \xC{-4.4};%position de l'objet
\def \xCC {(\xC*\f)/(\xC+\f)};%position de l'image
\coordinate (O1) at (0,0);%centre optique de la première lentille
\coordinate (A) at (\xA,0);%position de l'objet
\coordinate (B) at (\xB,0);%position de l'objet
\coordinate (C) at (\xC,0);%position de l'objet
\def \f{2};%focale de la première lentille
\coordinate (F') at (\f,0);
\coordinate (A') at ({\xAA},0);%position de l'image
\coordinate (B') at ({\xBB},0);%position de l'image
\coordinate (C') at ({\xCC},0);%position de l'image
%rectangle grisé de profondeur de champ
\fill [gray!50,opacity=0.75] (-4.4,0) rectangle (-5.95,1);
\node at (A) {$\bullet$} ;
\node at (B) {$\bullet$} ;
\node at (C) {$\bullet$} ;
\draw[thin,->](-7.5,0)--++(13,0)node[above right,fill=white]{\tiny +};
\draw[shift={(O1)},ultra thick ,<->,>=latex] (0,-\taillebas)--(0,\taillehaut) node[above]{\scriptsize Objectif de focale $\mathrm{f}_2 >\mathrm{f}_1$};%lentille convergente
\draw[,red,simple] (A)--(0,2);
\draw[,red,simple] (0,2)--(A')--++($0.35*(A')-0.35*(0,2)$);
\draw[,red,simple] (A)--(0,-2);
\draw[,red,simple] (0,-2)--(A')--++($0.35*(A')-0.35*(0,-2)$);
\draw[,blue,simple] (B)--(0,2);
\draw[,blue,simple] (0,2)--(B')--++($0.35*(B')-0.35*(0,2)$);
\draw[,blue,simple] (B)--(0,-2);
\draw[,blue,simple] (0,-2)--(B')--++($0.35*(B')-0.35*(0,-2)$);
\draw[purple,simple] (C)--(0,2);
\draw[purple,simple] (0,2)--(C')--++($0.35*(C')-0.35*(0,2)$);
\draw[purple,simple] (C)--(0,-2);
\draw[purple,simple] (0,-2)--(C')--++($0.35*(C')-0.35*(0,-2)$);
\foreach \x/\z in {O1/\f}{
\draw[shift={(\x)}] (0,0) node[below left] { O};
\draw[shift={(\x)}] (\z,2pt) --++ (0,-4pt) node[below] { F'};
\draw[shift={(\x)}] ({-\z},2pt) --++ (0,-4pt) node[below] { F};
}
\fill [gray, opacity=0.75] (3.325,0) ellipse (0.10 and 0.19);
\draw [|<->|] (-4.4,1) -- (-5.95,1) node [above,midway] {\tiny Profondeur de champ};
\end{scope}
\begin{scope}[shift=({0,-12.5})]
\fill [gray, opacity=0.75] (-5,0) ellipse (0.10 and 0.19);
\node at (-0.6,0) {: tache qui sera vue nette par la pellicule ou le capteur};
\end{scope}
\end{tikzpicture}
Profondeur de champ et distance de mise au point
\begin{tikzpicture}[scale=1]
\begin{scope}
\node at (-0.6,0) {\centering \boxed{\textbf{\small Plus la distance de mise au point est grande, plus la profondeur de champ est grande}}};
\end{scope}
\begin{scope}[shift=({0,-3.5})]
\def \taillehaut{2.5}; %taille de la lentille
\def \taillebas{2.5};%taille de la lentille
\def \xA{-5};%position de l'objet
\def \xAA {(\xA*\f)/(\xA+\f)};%position de l'image
\def \xB{-6.75};%position de l'objet
\def \xBB {(\xB*\f)/(\xB+\f)};%position de l'image
\def \xC{-4};%position de l'objet
\def \xCC {(\xC*\f)/(\xC+\f)};%position de l'image
\coordinate (O1) at (0,0);%centre optique de la première lentille
\coordinate (A) at (\xA,0);%position de l'objet
\coordinate (B) at (\xB,0);%position de l'objet
\coordinate (C) at (\xC,0);%position de l'objet
\def \f{1.5};%focale de la première lentille
\coordinate (F') at (\f,0);
\coordinate (A') at ({\xAA},0);%position de l'image
\coordinate (B') at ({\xBB},0);%position de l'image
\coordinate (C') at ({\xCC},0);%position de l'image
\fill [gray!50,opacity=0.75] (-4,0) rectangle (-6.75,1);
\node at (A) {$\bullet$} ;
\node at (B) {$\bullet$} ;
\node at (C) {$\bullet$} ;
\draw[thin,->](-7.5,0)--++(13,0)node[above right,fill=white]{\tiny +};
\draw[shift={(O1)},ultra thick ,<->,>=latex] (0,-\taillebas)--(0,\taillehaut) node[above]{\scriptsize Objectif};%lentille convergente
\draw[,red,simple] (A)--(0,2);
\draw[,red,simple] (0,2)--(A')--++($0.35*(A')-0.35*(0,2)$);
\draw[,red,simple] (A)--(0,-2);
\draw[,red,simple] (0,-2)--(A')--++($0.35*(A')-0.35*(0,-2)$);
\draw[,blue,simple] (B)--(0,2);
\draw[,blue,simple] (0,2)--(B')--++($0.35*(B')-0.35*(0,2)$);
\draw[,blue,simple] (B)--(0,-2);
\draw[,blue,simple] (0,-2)--(B')--++($0.35*(B')-0.35*(0,-2)$);
\draw[purple,simple] (C)--(0,2);
\draw[purple,simple] (0,2)--(C')--++($0.35*(C')-0.35*(0,2)$);
\draw[purple,simple] (C)--(0,-2);
\draw[purple,simple] (0,-2)--(C')--++($0.35*(C')-0.35*(0,-2)$);
\foreach \x/\z in {O1/\f}{
\draw[shift={(\x)}] (0,0) node[below left] { O};
\draw[shift={(\x)}] (\z,2pt) --++ (0,-4pt) node[below left] {F'};
\draw[shift={(\x)}] ({-\z},2pt) --++ (0,-4pt) node[below] {F};
}
\fill [gray, opacity=0.75] (2.14,0) ellipse (0.10 and 0.19);
\draw [|<->|] (-4,1) -- (-6.75,1) node [above,midway] {\tiny Profondeur de champ};
\end{scope}
\begin{scope}[shift=({0,-9.5})]
\def \taillehaut{2.5}; %taille de la lentille
\def \taillebas{2.5};%taille de la lentille
\def \xA{-4};%position de l'objet
\def \xAA {(\xA*\f)/(\xA+\f)};%position de l'image
\def \xB{-4.9};%position de l'objet
\def \xBB {(\xB*\f)/(\xB+\f)};%position de l'image
\def \xC{-3.4};%position de l'objet
\def \xCC {(\xC*\f)/(\xC+\f)};%position de l'image
\coordinate (O1) at (0,0);%centre optique de la première lentille
\coordinate (A) at (\xA,0);%position de l'objet
\coordinate (B) at (\xB,0);%position de l'objet
\coordinate (C) at (\xC,0);%position de l'objet
\def \f{1.5};%focale de la première lentille
\coordinate (F') at (\f,0);
\coordinate (A') at ({\xAA},0);%position de l'image
\coordinate (B') at ({\xBB},0);%position de l'image
\coordinate (C') at ({\xCC},0);%position de l'image
\fill [gray!50,opacity=0.75] (-3.4,0) rectangle (-4.9,1);
\node at (A) {$\bullet$} ;
\node at (B) {$\bullet$} ;
\node at (C) {$\bullet$} ;
\draw[thin,->](-7.5,0)--++(13,0)node[above right,fill=white]{\tiny +};
\draw[shift={(O1)},ultra thick ,<->,>=latex] (0,-\taillebas)--(0,\taillehaut) node[above]{\scriptsize Objectif};%lentille convergente
\draw[,red,simple] (A)--(0,2);
\draw[,red,simple] (0,2)--(A')--++($0.35*(A')-0.35*(0,2)$);
\draw[,red,simple] (A)--(0,-2);
\draw[,red,simple] (0,-2)--(A')--++($0.35*(A')-0.35*(0,-2)$);
\draw[,blue,simple] (B)--(0,2);
\draw[,blue,simple] (0,2)--(B')--++($0.35*(B')-0.35*(0,2)$);
\draw[,blue,simple] (B)--(0,-2);
\draw[,blue,simple] (0,-2)--(B')--++($0.35*(B')-0.35*(0,-2)$);
\draw[purple,simple] (C)--(0,2);
\draw[purple,simple] (0,2)--(C')--++($0.35*(C')-0.35*(0,2)$);
\draw[purple,simple] (C)--(0,-2);
\draw[purple,simple] (0,-2)--(C')--++($0.35*(C')-0.35*(0,-2)$);
\foreach \x/\z in {O1/\f}{
\draw[shift={(\x)}] (0,0) node[below left] { O};
\draw[shift={(\x)}] (\z,2pt) --++ (0,-4pt) node[below] { F'};
\draw[shift={(\x)}] ({-\z},2pt) --++ (0,-4pt) node[below] { F};
}
\fill [gray, opacity=0.75] (2.4,0) ellipse (0.10 and 0.19);
\draw [|<->|] (-3.4,1) -- (-4.9,1) node [above,midway] {\tiny Profondeur de champ};
\end{scope}
\begin{scope}[shift=({0,-12.5})]
\fill [gray, opacity=0.75] (-5,0) ellipse (0.10 and 0.19);
\node at (-0.6,0) {: tache qui sera vue nette par la pellicule ou le capteur};
\end{scope}
\end{tikzpicture}
Profondeur de champ et ouverture
\begin{tikzpicture}[scale=1]
\begin{scope}
\node at (-0.6,0) {\centering \boxed{\textbf{\small Plus l'ouverture de l'objectif est petite, plus la profondeur de champ est grande}}};
\end{scope}
\begin{scope}[shift=({0,-3.5})]
\def \taillehaut{2.5}; %taille de la lentille
\def \taillebas{2.5};%taille de la lentille
\def \xA{-5};%position de l'objet
\def \xAA {(\xA*\f)/(\xA+\f)};%position de l'image
\def \xB{-6.75};%position de l'objet
\def \xBB {(\xB*\f)/(\xB+\f)};%position de l'image
\def \xC{-4};%position de l'objet
\def \xCC {(\xC*\f)/(\xC+\f)};%position de l'image
\coordinate (O1) at (0,0);%centre optique de la première lentille
\coordinate (A) at (\xA,0);%position de l'objet
\coordinate (B) at (\xB,0);%position de l'objet
\coordinate (C) at (\xC,0);%position de l'objet
\def \f{1.5};%focale de la première lentille
\coordinate (F') at (\f,0);
\coordinate (A') at ({\xAA},0);%position de l'image
\coordinate (B') at ({\xBB},0);%position de l'image
\coordinate (C') at ({\xCC},0);%position de l'image
\fill [gray!50,opacity=0.75] (-4,0) rectangle (-6.75,1);
\node at (A) {$\bullet$} ;
\node at (B) {$\bullet$} ;
\node at (C) {$\bullet$} ;
\draw[thin,->](-7.5,0)--++(13,0)node[above right,fill=white]{\tiny +};
\draw[shift={(O1)},ultra thick ,<->,>=latex] (0,-\taillebas)--(0,\taillehaut) node[above]{\scriptsize Objectif};%lentille convergente
\draw[,red,simple] (A)--(0,2);
\draw[,red,simple] (0,2)--(A')--++($0.35*(A')-0.35*(0,2)$);
\draw[,red,simple] (A)--(0,-2);
\draw[,red,simple] (0,-2)--(A')--++($0.35*(A')-0.35*(0,-2)$);
\draw[,blue,simple] (B)--(0,2);
\draw[,blue,simple] (0,2)--(B')--++($0.35*(B')-0.35*(0,2)$);
\draw[,blue,simple] (B)--(0,-2);
\draw[,blue,simple] (0,-2)--(B')--++($0.35*(B')-0.35*(0,-2)$);
\draw[purple,simple] (C)--(0,2);
\draw[purple,simple] (0,2)--(C')--++($0.35*(C')-0.35*(0,2)$);
\draw[purple,simple] (C)--(0,-2);
\draw[purple,simple] (0,-2)--(C')--++($0.35*(C')-0.35*(0,-2)$);
\foreach \x/\z in {O1/\f}{
\draw[shift={(\x)}] (0,0) node[below left] { O};
\draw[shift={(\x)}] (\z,2pt) --++ (0,-4pt) node[below left] {F'};
\draw[shift={(\x)}] ({-\z},2pt) --++ (0,-4pt) node[below] {F};
}
\fill [gray, opacity=0.75] (2.14,0) ellipse (0.10 and 0.19);
\draw [|<->|] (-4,1) -- (-6.75,1) node [above,midway] {\tiny Profondeur de champ};
\end{scope}
\begin{scope}[shift=({0,-10.5})]
\def \taillehaut{3.5}; %taille de la lentille
\def \taillebas{3.5};%taille de la lentille
\def \xA{-5};%position de l'objet
\def \xAA {(\xA*\f)/(\xA+\f)};%position de l'image
\def \xB{-6.15};%position de l'objet
\def \xBB {(\xB*\f)/(\xB+\f)};%position de l'image
\def \xC{-4.25};%position de l'objet
\def \xCC {(\xC*\f)/(\xC+\f)};%position de l'image
\coordinate (O1) at (0,0);%centre optique de la première lentille
\coordinate (A) at (\xA,0);%position de l'objet
\coordinate (B) at (\xB,0);%position de l'objet
\coordinate (C) at (\xC,0);%position de l'objet
\def \f{1.5};%focale de la première lentille
\coordinate (F') at (\f,0);
\coordinate (A') at ({\xAA},0);%position de l'image
\coordinate (B') at ({\xBB},0);%position de l'image
\coordinate (C') at ({\xCC},0);%position de l'image
\fill [gray!50,opacity=0.75] (-4.25,0) rectangle (-6.15,1);
\node at (A) {$\bullet$} ;
\node at (B) {$\bullet$} ;
\node at (C) {$\bullet$} ;
\draw[thin,->](-7.5,0)--++(13,0)node[above right,fill=white]{\tiny +};
\draw[shift={(O1)},ultra thick ,<->,>=latex] (0,-\taillebas)--(0,\taillehaut) node[above]{\scriptsize Objectif};%lentille convergente
\draw[,red,simple] (A)--(0,3);
\draw[,red,simple] (0,3)--(A')--++($0.35*(A')-0.35*(0,3)$);
\draw[,red,simple] (A)--(0,-3);
\draw[,red,simple] (0,-3)--(A')--++($0.35*(A')-0.35*(0,-3)$);
\draw[,blue,simple] (B)--(0,3);
\draw[,blue,simple] (0,3)--(B')--++($0.35*(B')-0.35*(0,3)$);
\draw[,blue,simple] (B)--(0,-3);
\draw[,blue,simple] (0,-3)--(B')--++($0.35*(B')-0.35*(0,-3)$);
\draw[purple,simple] (C)--(0,3);
\draw[purple,simple] (0,3)--(C')--++($0.35*(C')-0.35*(0,3)$);
\draw[purple,simple] (C)--(0,-3);
\draw[purple,simple] (0,-3)--(C')--++($0.35*(C')-0.35*(0,-3)$);
\foreach \x/\z in {O1/\f}{
\draw[shift={(\x)}] (0,0) node[below left] { O};
\draw[shift={(\x)}] (\z,2pt) --++ (0,-4pt) node[below] { F'};
\draw[shift={(\x)}] ({-\z},2pt) --++ (0,-4pt) node[below] { F};
}
\fill [gray, opacity=0.75] (2.15,0) ellipse (0.10 and 0.19);
\draw [|<->|] (-4.25,1) -- (-6.15,1) node [above,midway] {\tiny Profondeur de champ};
\end{scope}
\begin{scope}[shift=({0,-14.5})]
\fill [gray, opacity=0.75] (-5,0) ellipse (0.10 and 0.19);
\node at (-0.6,0) {: tache qui sera vue nette par la pellicule ou le capteur};
\end{scope}
\end{tikzpicture}
Propagation dans un milieu stratifié
\begin{tikzpicture}[scale=0.5]
\draw [thick] (-15,0) -- (15,0);
\draw [thick] (-15,2) -- (15,2);
\draw [thick] (-15,4) -- (15,4);
\draw [thick] (-15,6) -- (15,6);
\draw [thick] (-15,8) -- (15,8);
\draw [thick] (-15,10) -- (15,10);
\node at(17,1) {$n_1$};
\node at(17,3) {$n_2 < n_1$};
\node at(17,5) {$n_3 < n_2$};
\node at(17,7) {$n_4 < n_3$};
\node at(17,9) {$n_5 < n_4$};
\draw [thick,red,simple] (-15,0) -- (-14,2);
\draw [thick,red,simple] (-14,2) -- (-12,4);
\draw [thick,red,simple] (-12,4) -- (-9,6);
\draw [thick,red,simple] (-9,6) -- (-5,8);
\draw [thick,red,simple] (-5,8) -- (0,10);
\draw [thick,red,simple] (0,10)--(5,8);
\draw [thick,red,simple] (5,8)--(9,6) ;
\draw [thick,red,simple] (9,6)--(12,4) ;
\draw [thick,red,simple] (12,4) -- (14,2);
\draw [thick,red,simple] (14,2) -- (15,0);
\draw [dashed] (-14,1) -- (-14,3);
\draw [dashed] (-12,3) -- (-12,5);
\draw [dashed] (-9,5) -- (-9,7);
\draw [dashed] (-5,7) -- (-5,9);
\draw [dashed] (0,9) -- (0,11);
\draw [dashed] (14,1) -- (14,3);
\draw [dashed] (12,3) -- (12,5);
\draw [dashed] (9,5) -- (9,7);
\draw [dashed] (5,7) -- (5,9);
\end{tikzpicture}
Miroir plan, point objet et point image
\begin{tikzpicture}
%miroir
\begin{scope}[rotate=0]
\shadedraw[white,right color=white,left color=gray!50] (0,-2.1)--++(0,4.2)--++(0.7,0)--++(0,-4.2)--cycle;
%\shadedraw = dégradé avec les différentes couleurs définies à l'intérieur des crochets
\draw[thick] (0,-2.1)--(0,2.1);
\foreach \z in {-1.9,-1.7, ...,2.1}%masse
{
\draw (0,\z)--++(0.25,-0.15);
}
%fin miroir
\end{scope}
\draw [dotted] (-4,-1.5) --++ (8,0);
\draw [dashed,thin,black] (-3.5,0) --++ (3.5,0) node[near start,fill=white]{\scriptsize{normale}};
\draw [dashed,thin,black] (-3.5,1) --++ (3.5,0);
%rayon
\node at (-3,-1.5) [below]{A};
\draw (-3,-1.45) -- (-3,-1.55);
\draw[thick,simple,red] (-3,-1.5)--(0,0);
\draw[thick,simple,red] (0,0)--(-3,1.5);
%prolongement
\node at (3,-1.5) [below]{A'};
\draw (3,-1.45) -- (3,-1.55);
\draw [dashed,red,thick] (0,0) -- (3,-1.5);
%rayon
\node at (-3,-1.5) [below]{A};
\draw (-3,-1.45) -- (-3,-1.55);
\draw[thick,double,blue] (-3,-1.5)--(0,1);
\draw[thick,double,blue] (0,1)--(-3,3.5);
%prolongement
\node at (3,-1.5) [below]{A'};
\draw (3,-1.45) -- (3,-1.55);
\draw [dashed,blue,thick] (0,1) -- (3,-1.5);
\end{tikzpicture}
Espaces objet-image, réels ou virtuels
\begin{tikzpicture}[scale=0.85]
\tikzstyle arrowstyle=[scale=1.5]
\node[draw,rounded corners=3pt,minimum width=3cm,minimum
height=3cm,fill=SkyBlue!20] (SO){};
\draw (0,-2.5) node[above] {\small Système optique};
\draw[thin, dashed](-3.5,0)--(4,0);
\draw [->,-latex,blue,ultra thick] (-6,1.5) -- (-1.8,1.5) node [midway,fill=white]{\scriptsize{Espace objet réel}};
\draw [->,-latex,green,ultra thick] (-6,0.75) -- (1.8,0.75) node [midway,fill=white]{\scriptsize{Espace image virtuelle}};
\draw [<-,-latex,red,ultra thick] (6,-0.75) -- (-1.8,-0.75) node [midway,fill=white]{\scriptsize{Espace objet virtuel}};
\draw [<-,-latex,purple,ultra thick] (6,-1.5) -- (1.8,-1.5) node [midway,fill=white]{\scriptsize{Espace image réelle}};
\end{tikzpicture}
Miroir concave : objet et image réels
\begin{tikzpicture}
\def \rayon {4}% rayon du miroir
\def \xA{-6};%position de l'objet
\def \yB{2};%hauteur de l'objet
\def \f{-0.5*\rayon};%focale
\def \xAA {{(\f*\f)/(\xA-\f)+\f}};%position de l'image : calcul grâce à la relation de conjugaison
\def \yBB {(\f*\yB)/(\f-\xA)};%hauteur de l'image : calcul grâce à la relation de grandissement
\coordinate (S) at (0,0);
\coordinate (F) at (\f,0);%foyer
\coordinate (C) at ({-\rayon},0);%centre de courbure
\coordinate (A) at (\xA,0);
\coordinate (B) at (\xA,\yB);
\coordinate (A') at ({\xAA},0);
\coordinate (B') at ({\xAA},{\yBB});
%Axe optique
\draw[thin,->](-6.5,0)--++(7,0);
%Objet
\draw[thick,->,>=latex] (A)node{$\bullet$}--(B);
%Images
\draw[thick,->,>=latex] (A')node{$\bullet$}--(B');
%Rayon qui arrive parallèle à l'axe optique
\draw[thick,simple,red] (B)--(0,\yB);
\draw[thick,simple,red] (0,\yB)--(B')--++($0.3*(B')-0.3*(0,\yB)$);
%Rayon qui passe par le foyer
\draw[thick,double,blue] (B)--(0,{\yBB});
\draw[thick,double,blue] (0,{\yBB})--(B')--++($0.3*(B')-0.3*(0,{\yBB})$);
%Rayon qui passe par le sommet qui ressort avec le même angle que l'angle d'incidence
\draw[thick,simplegros,orange] (B)--(0,0);
\draw[thick,simplegros,orange](0,0)--(B')--++($0.3*(B')-0.3*(0,0)$);
%Rayon qui passe par le centre C qui n'est pas dévié
\draw[thick,doublegros,green] (B) --(B');
\draw[thick,doublegrosrev,green] (B') --++($-1*(B)+1*(B')$);
%Miroir
\draw[ultra thick] (S)--++(0,2)--++(120:0.3);
\draw[ultra thick] (S)--++(0,-4.5)--++(-120:0.3);
\foreach \y in {1.9,1.7,1.5,1.3,...,0}{
\draw [black](0,\y)--++(0.25,-0.15);
}
\foreach \y in {4.5,4.3,...,0}{
\draw [black](0,-\y)--++(0.25,-0.15);
}
%Fin miroir
%Points particuliers
\foreach \xtext in {A,C,F}
\draw[shift={(\xtext)}] (0pt,2pt) -- (0pt,-2pt) node[below] {\xtext};
\foreach \xtext in {A',B}
\draw[shift={(\xtext)}] node[above] {\xtext};
\draw[shift={(B')}] node[below] {B'};
\draw[shift={(S)}] node[below right=0.1cm,fill=white] {S};
\node at (0,2) [right=0.1cm,fill=white] {H};
\node at (0,-1) [right=0.1cm,fill=white] {H'};
\end{tikzpicture}