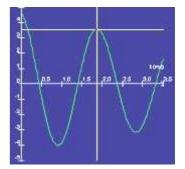


TP N°6-PROF : OSCILLATIONS ELECTRIQUES LIBRES DANS UN CIRCUIT RLC SERIE


2) Questions:

- a. Lorsque R est faible, la courbe n'est pas exponentielle décroissante, mais oscillante. C'est la bobine qui est responsable de ce changement de courbe.
- b. Une pseudo-période est la période d'un signal sinusoïdal amorti. Le terme de période est utilisé pour un signal sinusoïdal.
- c. Lorsque R est grand, le signal n'est plus oscillant.

II Influence de L et de C sur la pseudo-période :

1) <u>Influence de L :</u>

Mesure d'une pseudo-période à l'aide du pointeur :

a. Pour des paramètres $C = 0.1 \mu F$ et $R = 100 \Omega$:

L(H)	1	0,8	0,5	0,4	0,2
T(s)	1.87*10 ⁻³	1.75*10 ⁻³	1.35*10 ⁻³	1.31*10 ⁻³	8.9*10 ⁻⁴

b. Plus la valeur de L est grande, plus la pseudo période est grande. La valeur de L n'a pas d'influence sur l'amortissement.

2) <u>Influence de C:</u>

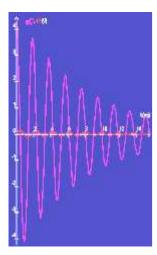
a. Pour des paramètres L = 1 H et R = 100:

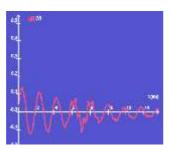
C (µF)	0,1	0,5	1	1,5	2
T(s)	1.87*10 ⁻³	$4.10*10^{-3}$	5.87*10 ⁻³	6.96*10 ⁻³	$8.10*10^{-3}$

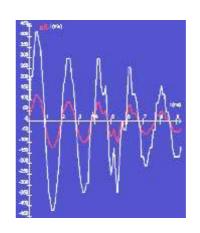
b. Plus la valeur de C est grande, plus la pseudo période est grande. La valeur de C n'a pas d'influence sur l'amortissement.

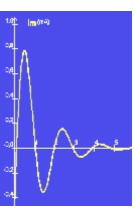
3) Influence de R:

Plus la valeur de R est grande, plus l'amortissement est grand, et plus l'amplitude des oscillations décroît rapidement. La valeur de R n'a pas d'influence sur la pseudo période des oscillations.


4) Exploitation:


Nous pouvons penser que la pseudo période des oscillations est proportionnelle à L ainsi qu'à C, mais qu'elle est indépendante de la valeur de R.


III Bilan énergétique :


Paramètres initiaux : E = 12V ; $C = 9 \mu F$; $R = 100 \Omega$ et L = 1.2 H : On prend des valeurs importantes pour avoir des **échanges énergétiques importants**.

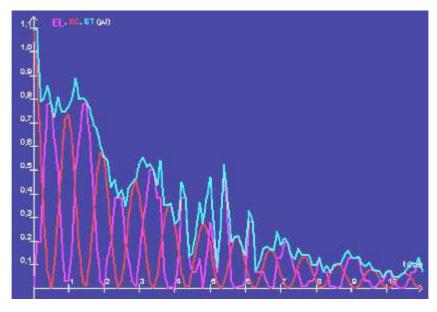
ATTENTION: On a - i, ici!!!

On peut utiliser la fenêtre calcul du logiciel :

		-0
Grande	Fonctions	Unité
uc=	acquisition("f(t)")	٧
UF=	acquistion("f(t)")	٧
) H	ur/70	A
Ec=	0,5*9e-6/uo^2	J
EL=	1,2611/2 4/2	J
Et=	Ec+BL	J

Ou alors on utilise le tableau de valeurs (comme pour Excel) :

B1 ▼ 世	=0,5*0,1E-6*uC[1]*uC[1]		
A	В	C	
t	EC	uC	
5	J	V	
4,86E-02	3,13E-11	2,50E-02	


Calcul de i(t)

Calcul de E_C(t)

Calcul de $E_L(t)$

=EL[1]+EC[1]				Scientifiqu	
н	T []	3	К	L	
î	im	EL	EC	ET	
A	A	J	J	J	
,25E-04	-4,09E-04	7,81E-09	1,09E-06	1,10E-06	

 $\underline{Calcul\ de\ E}_{\underline{T}}(\underline{t})$

