

RAPPELS DE CHIMIE ORGANIQUE DE 1ERE S

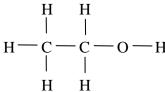
L Différentes formules chimiques pour une même molécule :

Une molécule organique comportera donc une chaîne carbonée sur laquelle pourra se greffer un ou plusieurs groupes caractéristiques.

> Formule brute:

Elle est du type $C_xH_yO_zN_t$.

 $Ex : C_6H_{12}O_6$ pour le glucose.


Elle renseigne sur la nature et le nombre d'atomes dans la molécule.

> La formule développée plane :

Elle renseigne sur la nature des liaisons liant les différents atomes.

Elle diffère de la représentation de Lewis par l'absence des doublets non liants.

 \underline{Ex} : C_2H_6O

> <u>La formule semi-développée :</u>

On ne fait plus apparaître les liaisons entre les atomes C, N et O et l'atome H.

 $Ex : C_2H_6O : CH_3-CH_2-OH$

> <u>La représentation topologique :</u>

On représente l'enchaînement des atomes de C par une ligne brisé qui représente les liaison simples entre les C.

Chaque extrémité de segment comporte un atome de C et autant d'atome d'H pour respecter la règle de l'octet.

 $Ex : C_2H_6O :$

ОН

CH3-CH=O

II Nomenclature des molécules organiques :

1) Les différentes familles d'hydrocarbures :

Particularités de la chaîne	Nom de la famille
Chaîne ouverte saturée	Alcane
Chaîne cyclique saturée	Cyclane
Chaîne comportant une double liaison	Alcène
Chaîne comportant une triple liaison	Alcyne

2) Nomenclature des alcanes :

\succ Ce sont les hydrocarbures à chaîne ouverte de formule C_nH_{2n+2} :

Nom	Méthane	Ethane	Propane	Butane	Pentane	Hexane
Formule brute	CH ₄	C_2H_6	C_3H_8	C_4H_{10}	C_5H_{12}	C_6H_{14}

Nom des groupes caractéristiques alkyle :

Nom du groupe	Méthyle	Ethyle	Propyle
Formule brute	CH ₃ -	CH ₃ -CH ₂ -	CH ₃ -CH ₂ -CH ₂ -

> Nom des alcanes à chaînes ramifiées :

On cherche la chaîne carbonée la plus longue.

On place en préfixe le nom du groupe alkyle ramifié avec sa position puis on complète par le nom de la chaîne carbonée principale :

<u>Ex</u> :

$$\begin{array}{c} CH_3 \\ | \\ CH_3 - CH - CH_2 - CH_2 - CH_3 \\ 1 & 2 & 3 & 4 & 5 \end{array}$$

2-méthylpentane:

L'indice pour le préfixe est le plus petit possible

<u>Rq:</u> si un groupe alkyl est présent dans plusieurs positions, on utilise les préfixes di, tri

2,3-diméthylpentane

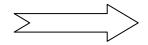
Autre ex:

3,4-diméthylhexane:

On utilise l'ordre croissant pour les indices

3) Nomenclature des alcènes :

On note la double liaison par ène et l'indice de sa position.


<u>Ex</u> :

$$CH_3 - CH = CH - CH_3$$
1 2 3 4

But-2-ène

Ex
$$CH_2 = CH - CH_2 - CH_3$$

But-1-ène

III Groupes caractéristiques et familles :

Groupe fonctionnel	Famille	Terminaison	Exemples
—О—Н	Alcool	-ol	CH ₃ —CH—CH ₂ —OH 2-méthylpropan-1-ol CH ₃
OH Ou COOH ou CO ₂ H	Acide carboxylique	-oïque	CH ₃ —C OH acide éthanoïque
-c H	Aldéhyde	-al	H —C — méthanal
-c- 0	Cétone	-one	CH ₃ —CH ₂ —C—CH ₂ —CH ₃ pentan-3-one O
-C-NH ₂	Amine	-amine	CH ₃ —CH ₂ —CH ₂ — CH ₂ —NH ₂ butan-1-amine
-C $-$ X	Composé halogéné	Ici préfixe : Fluoro- Chloro	CH ₃ —F fluorométhane CH ₃ —CH ₂ —I iodoéthane
C=C	Alcènes	-ène	CH ₃ -CH=CH-CH ₃ But-2-ène CH ₃ -CH=CH ₂ Propène

Rq: Le groupe les composés C = O s'appelle le groupe carbonyle. La famille correspondante s'appelle les composés carbonylés, elle inclue la famille des aldéhydes et la famille des cétones.

IV Tests caractéristiques des familles :

Groupe caractéristique	Famille	Formule générale	Réactif	Mode opératoire	Observation
Groupe carboxyle -c -0 -H 0	Acide carboxylique	R-C-0-H	Papier pH	Déposer une goutte de la Lepapier pH prend solution sur un morceau une teinte acide : de papier pH pH < 7	LepapierpHprend une teinte acide: pH<7
Groupe amino	Amine	R-NH,	Papier pH	Déposer une goutte de la Le papier pH prend solution sur un morceau une teinte basique : de papier pH pH > 7	Le papier pH prend une teinte basique : pH > 7
U 78 157 ¥-	Dėrivė halogėnė	R-X	Solution alcoolique de nitrate d'argent	Dns un tube propre et sec, in 2 mL de alcoolique de d'argent, puis al balogéné	à essai ntroduire Formation d'un solution précipité blanc de nitrate chlorure d'argent outer l'à noircissant à la
	Aldéhyde et cétone	R-C-H R-C-R	2,4-DNPH (2,4dinitrophėnylhydrazine)	Dans un tube à essai, verser l'mL de 2,4-DNPH et ajouter précipité quelques gouttes du orangé réactif à tester	Formation d'un précipité jaune orangé
Groupe carbonyle	Aldéhyde	R-C-H 0	Liqueur de Fehling	Dans un tube à essai, verser I mL de liqueur Formation d'un de Fehling et ajouter précipité rouge quelques gouttes du brique d'oxyde de réactif à tester. Chauffer cuivre (1)	Formation d'un précipité rouge brique d'oxyde de cuivre (1)
Composés ayant une double liaison C=C	Alcenes	R. CEC N.	Eau de brome	Dans un tube à essais qui contient le liquide à tester, versez quelques gouttes d'eau de brome	Décoloration de l'eau de brome après agitation