

CORRECTION DU DS N°6

Exercice n°1 : La lampe Euréka²Electronique : 7pts

- 1) Le logo signifie que la lampe économique permet d'éclairer autant qu'une lampe à incandescence de 100 W mais elle ne consomme qu'une puissance de 20 W.
- 2) Calcul d'énergie:
 - a. On calcule l'énergie transférée par la formule :

$$P = \frac{W}{\Delta t} d'où W_{20} = P \times \Delta t = 20 \times 8000 \times 3600 = 5.8 * 10^8 J$$

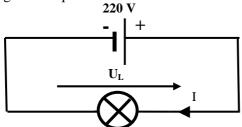
b.Pour la lampe à incandescence on obtient :

$$W_{100} = P \times \Delta t = 100 \times 8000 \times 3600 = 2,88 \times 10^9 J$$

3) On convertit les énergies en kWh et on calcul le coup de chaque consommation :

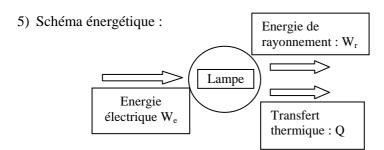
$$W_{20} = \frac{5.8 * 10^8}{3.6 * 10^6} = 1.6 * 10^2 \text{ kWh}$$
 et $W_{100} = \frac{2.88 * 10^9}{3.6 * 10^6} = 8.0 * 10^2 \text{ kWh}$

On calcul le coût de chaque consommation :


$$C_{20} = 1,6*10^2*0,124 = 20 \in$$

et
$$C_{100} = 8.0*10^2*0,124 = 99$$
€

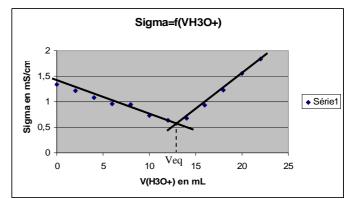
L'économie réalisée est donc de 79 € sur la durée & vie moyenne de la lampe (sans prendre en compte le coût de l'achat des lampes).


4) Montage électrique :

a.

b.La puissance perdue par effet Joule se calcule par :

$$P = R*I^2 = 15.2*(0,384)^2 = 2,24 W$$



$$W_e = W_r + Q$$

Exercice n°4: dosage d'un déboucheur de canalisation: 6pts

- 1) Lors du dosage, il s'effectue la réaction : $H_3O^+_{(aq)} + OH^-_{(aq)} \rightarrow 2 \ H_2O_{(l)}$
- 2) Courbe du dosage :
- 3) Forme et évolution de la courbe :

La courbe est constituée de **deux portions de droite** car nous savons que la **conductivité** σ **est proportionnelle à la concentration** d'une solution. Comme le volume de $H_3O^+_{(aq)}$ versé fait varier la concentration de la solution dans le bécher, alors la conductivité évolue en forme de

droite. Au début on a des ions $OH^-_{(aq)}$ en grande quantité dans le bécher donc la conductivité est relativement grande. Lorsque l'on verse des ions $H_3O^+_{(aq)}$, on remplace des ions $OH^-_{(aq)}$ par des molécules d'eau donc la conductivité diminue. A l'équivalence on a de l'eau dans le bécher (avec des ions spectateurs) donc la conductivité est minimum. Après l'équivalence, on ajoute des ions $H_3O^+_{(aq)}$ en grande quantité donc la conductivité augmente fortement.

- 4) D'après le graphique nous avons $V_E(H_3O_{(aq)}^+) = 13.1 \text{ mL}.$
- 5) Tableau d'avancement :

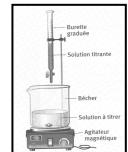
Equation de la réaction		$H_3O^+_{(aq)}$ +	$OH_{(aq)} \rightarrow$	$2 H_2O_{(1)}$
Etat du système	Avancement	$n(H_3O^+_{(aq)})$	$n(OH_{(aq)})$	$n(H_2O_{(1)})$
EI	0	C_aV_a	C_bV_b	excès
En cours	X	C_aV_a - x	C_bV_b - x	excès
A l'équivalence	$x_{\rm E}$	0	0	excès

6) A l'équivalence on peut écrire que :

$$C_a V_{aE} - x_E = 0 = C_b V_b - x_E$$
 donc $C_b = \frac{C_a \times V_{aE}}{V_b} = \frac{1.00 * 10^{-1} * 13.1 * 10^{-3}}{10.0 * 10^{-3}} = 1.31 * 10^{-1} mol / L$

7) Comme la solution commerciale a été diluée 80 fois alors : $c_0 = 80 \cdot C_b = 80 \cdot 1.31 \cdot 10^{-1} = 10.5 \text{ mol/L}$

Exercice n°5: Etalonnage d'une solution aqueuse: 7pts


1) Les couples rédox mis en jeu sont : $CO_{2(aq)}$ / $H_2C_2O_{4(aq)}$ et $MnO_{4\ (aq)}$ / $Mn^{2+}_{(aq)}$ Les demi-équations électroniques et l'équation de la réaction sont :

$$\frac{\text{MnO}_{4}^{-}_{(\text{aq})} + 8\text{H}^{+} + 5\text{e}^{-} = \text{Mn}^{2+}_{(\text{aq})} + 4\text{ H}_{2}\text{O}_{(\text{l})}}{\text{H}_{2}\text{C}_{2}\text{O}_{4(\text{aq})} = \text{CO}_{2(\text{aq})} + 2\text{H}^{+}_{(\text{aq})} + 2\text{ e}^{-}} \tag{*5}}$$

$$\frac{\text{MnO}_{4}^{-}_{(\text{aq})} + 5\text{ H}_{2}\text{C}_{2}\text{O}_{4(\text{aq})} + 6\text{H}^{+} \rightarrow 2\text{ Mn}^{2+}_{(\text{aq})} + 10\text{ }CO_{2(\text{aq})} + 8\text{ H}_{2}\text{O}_{(\text{l})}}{\text{O}_{2(\text{aq})}^{-}} + 8\text{ H}_{2}\text{O}_{(\text{l})}}$$

2) On calcule tout d'abord la quantité de matière :

$$n(H_2C_2O_4, 2 H_2O) = \frac{m}{M} = \frac{5.00}{126} = 4.00 * 10^{-2} mol$$
Puis la concentration : $c_O = \frac{n}{V} = \frac{4.00 * 10^{-2}}{100 * 10^{-3}} = 4.00 * 10^{-1} mol / L$

- 4) L'équivalence d'un dosage est atteinte lorsque tous les réactifs de la réaction ont été totalement consommés.
- 5) On peut repérer l'équivalence grâce à la couleur de la solution : la solution du bécher est initialement violette, à mesure que la réaction s'effectue, les ions MnO_{4 (aq)} violets disparaissent pour laisser place aux ions Mn²⁺_(aq) incolore. A l'équivalence, il n'y a plus d'ions MnO_{4 (aq)} donc cette équivalence sera repérée par la décoloration complète de la solution du bécher.
- 6) Tableau d'avancement :

a.

Equation		$2 \text{ MnO}_{4}^{-}_{(aq)} + 5 \text{ H}_{2}\text{C}_{2}\text{O}_{4(aq)} + 6\text{H}^{+} \rightarrow 2 \text{ Mn}^{2+}_{(aq)} + 10 CO_{2(aq)} + 8 \text{ H}_{2}\text{O}_{(l)}$							
Etat du système	Avancement (x en mol)								
Initial	$\mathbf{x} = 0$	$c_P^*V_P$	c _o *V _o	excès	0	0	excès		
Au cours de la transformation	X	$c_P * V_P - 2x$	$c_{O}*V_{O}-5x$	excès	2x	5x	excès		
A l'équivalence	$x_{\rm E}$	0	0	excès	$2x_{\rm E}$	5x _E	excès		

b. A l'équivalence on peut écrire :

$$c_P * V_P - 2x_E = 0 = c_O * V_{OE} - 5x_E \qquad \text{donc} \qquad x_E = \frac{c_O * V_{OE}}{5} = \frac{c_P * V_P}{2}$$

d'où :
$$c_P = \frac{2 * c_o * V_{OE}}{5 * V_P} = \frac{2 * 4.00 * 10^{-1} * 12.0 * 10^{-3}}{5 * 10.0 * 10^{-3}} = 0.192 \text{ mol/L}$$